860 research outputs found

    Non-Fermi Liquid Behavior and Double-Exchange Physics in Orbital-Selective Mott Systems

    Full text link
    We study a multi-band Hubbard model in its orbital selective Mott phase, in which localized electrons in a narrow band coexist with itinerant electrons in a wide band. The low-energy physics of this phase is shown to be closely related to that of a generalized double-exchange model. The high-temperature disordered phase thus differs from a Fermi liquid, and displays a finite scattering rate of the conduction electrons at the Fermi level, which depends continuously on the spin anisotropy.Comment: 5 pages, minor typos correcte

    Slave spin cluster mean field theory away from half-filling: Application to the Hubbard and the extended Hubbard Model

    Full text link
    A new slave-spin representation of fermion operators has recently been proposed for the half-filled Hubbard model. We show that with the addition of a gauge variable, the formalism can be extended to finite doping. The resulting spin problem can be solved using the cluster mean-field approximation. This approximation takes short-range correlations into account by exact diagonalization on the cluster, whereas long-range correlations beyond the size of clusters are treated at the mean-field level. In the limit where the cluster has only one site and the interaction strength UU is infinite, this approach reduces to the Gutzwiller approximation. There are some qualitative differences when the size of the cluster is finite. We first compute the critical UU for the Mott transition as a function of a frustrating second-neighbor interaction on lattices relevant for various correlated systems, namely the cobaltites, the layered organic superconductors and the high-temperature superconductors. For the triangular lattice, we also study the extended Hubbard model with nearest-neighbor repulsion. In additionto a uniform metallic state, we find a (3)×(3)\sqrt(3) \times \sqrt(3) charge density wave in a broad doping regime, including commensurate ones. We find that in the large UU limit, intersite Coulomb repulsion VV strongly suppresses the single-particle weight of the metallic state.Comment: 10 pages, 11 figures, submitted to PR

    Supersolidity, entropy and frustration

    Full text link
    We study the properties of t-t'-V model of hard-core bosons on the triangular lattice that can be realized in optical lattices. By mapping to the spin-1/2 XXZ model in a field, we determine the phase diagram of the t-V model where the supersolid characterized by the ordering pattern (x,x,-2x') ("ferrimagnetic" or SS A) is a ground state for chemical potential \mu >3V. By turning on either temperature or t' at half-filling \mu =3V, we find a first order transition from SS A to the elusive supersolid characterized by the (x,-x,0) ordering pattern ("antiferromagnetic" or SS C). In addition, we find a large region where a superfluid phase becomes a solid upon raising temperature at fixed chemical potential. This is an analog of the Pomeranchuk effect driven by the large entropic effects associated with geometric frustration on the triangular lattice.Comment: 4 pages, igures, LaTe

    Is the Mott transition relevant to f-electron metals ?

    Full text link
    We study how a finite hybridization between a narrow correlated band and a wide conduction band affects the Mott transition. At zero temperature, the hybridization is found to be a relevant perturbation, so that the Mott transition is suppressed by Kondo screening. In contrast, a first-order transition remains at finite temperature, separating a local moment phase and a Kondo- screened phase. The first-order transition line terminates in two critical endpoints. Implications for experiments on f-electron materials such as the Cerium alloy Ce0.8_{0.8}La0.1_{0.1}Th0.1_{0.1} are discussed.Comment: 5 pages, 3 figure

    Charge Disproportionation, Mixed Valence, and Janus Effect in Multiorbital Systems: A Tale of Two Insulators

    Get PDF
    Multiorbital Hubbard models host strongly correlated "Hund's metals" even for interactions much stronger than the bandwidth. We characterize this interaction-resilient metal as a mixed-valence state. In particular, it can be pictured as a bridge between two strongly correlated insulators: a high-spin Mott insulator and a charge-disproportionated insulator which is stabilized by a very large Hund's coupling. This picture is confirmed comparing models with negative and positive Hund's coupling for different fillings. Our results provide a characterization of the Hund's metal state and connect its presence with charge disproportionation, which has indeed been observed in chromates and proposed to play a role in iron-based superconductors

    Electronic correlations in Hund metals

    Get PDF
    To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U, Hund's coupling JH, and electronic filling n. We show that the main process behind the enhancement of correlations in Hund metals is the suppression of the double occupancy of a given orbital, as it also happens in the Mott insulator at half-filling. However, contrary to what happens in Mott correlated states the reduction of the quasiparticle weight Z with JH can happen in spite of increasing charge fluctuations. Therefore, in Hund metals the quasiparticle weight and the mass enhancement are not good measurements of the charge localization. Using simple energetic arguments we explain why the spin polarization induced by Hund's coupling produces orbital decoupling. We also discuss how the behavior at moderate interactions, with correlations controlled by the atomic spin polarization, changes at large U and JH due to the proximity to a Mott insulating state

    SYBR Green Real-Time PCR for Salmonella detection in meat products

    Get PDF
    The objective of this study was to develop a SYBR Green Real-Time PCR method for detecting salmonellae in meat samples. The study was conducted both on S. Typhimurium experimentally and naturally contaminated meat samples analyzed in parallel with the standard cultural method (ISO 6579/2001). After the pre-enrichment phase, a boiling DNA extraction procedure combined wity SYBR-Green I Real Time PCR, using primers Styinva-JHO-2, was developed
    • …
    corecore