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Electronic correlations in Hund metals

L. Fanfarillo, E. Bascones
Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, E-28049 Madrid (Spain).∗

(Dated: June 11, 2015)

To clarify the nature of correlations in Hund metals and its relationship with Mott physics we
analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U ,
Hund’s coupling JH and electronic filling n. We show that the main process behind the enhancement
of correlations in Hund metals is the suppression of the double-occupancy of a given orbital, as it also
happens in the Mott-insulator at half-filling. However, contrary to what happens in Mott correlated
states the reduction of the quasiparticle weight Z with JH can happen on spite of increasing charge
fluctuations. Therefore, in Hund metals the quasiparticle weight and the mass enhancement are not
good measurements of the charge localization. Using simple energetic arguments we explain why
the spin polarization induced by Hund’s coupling produces orbital decoupling. We also discuss how
the behavior at moderate interactions, with correlations controlled by the atomic spin polarization,
changes at large U and JH due to the proximity to a Mott insulating state.

PACS numbers: 74.70.Xa, 74.10.Fd, 71.30.+h

The Mott transition is one of the most dramatic man-
ifestations of electronic correlations [1, 2]. In the single
orbital Hubbard model at half-filling the system becomes
insulating at a critical interaction Uc to avoid the cost
of doubly occupying the orbital. Away from half-filling
metallicity is recovered. Nevertheless atomic configura-
tions involving double occupancy are avoided inducing
strong correlations between the electrons. Charge fluctu-
ations are suppressed and bad metallicity is observed.

In multiorbital systems the Mott transition happens
not only at half-filling but at all integer fillings [3]. The
crucial role of Hund’s coupling JH on electronic correla-
tions has been recognized only recently [4–14]. JH modi-
fies Uc in a doping dependent way [4, 8] and promotes bad
metallic behavior in a wide range of parameters [7, 9].

Within the context of iron superconductors, which ac-
comodate 6 electrons in 5 orbitals when undoped, the
term Hund metal was coined to name the correlated
metallic state induced by Hund’s coupling at moderate
interaction U [15]. Originally Hund metals were described
as strongly correlated but itinerant systems which are not
in close proximity to a Mott insulating state and have
physical properties distinctly different from doped Mott
insulators [10]. On the other hand, a number of authors
[16–22], have described iron superconductors as doped
Mott insulators due to the doping dependence of corre-
lations observed: there is both experimental and theo-
retical evidence of an enhancement of correlations with
hole-doping as the half-filling Mott insulator, with 5 elec-
trons in 5 orbitals, is approached[16–26].

Orbital dependent correlations, named orbital differ-
entiation, have been observed in some iron superconduc-
tors [16, 19, 21, 23, 26–28] and are known to play an im-
portant role in ruthenates[29]. It has been emphasized
that Hund’s coupling decouples the orbitals [8, 23, 30–
32], leads to orbital differentiation and even to an orbital
selective Mott transition [8, 30, 31]; however, the origin
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FIG. 1: (Color online) (a) Quasiparticle weight Z vs intraor-
bital interaction U and Hund’s coupling JH for 6 electrons in
5 orbitals, the filling of undoped iron superconductors. U and
JH are in units of the bare bandwidth W and U . A strongly
correlated metallic region with small Z, in violet, appears in
a wide range of parameters. The Mott insulating state is in
black. The region in yellow-orange is metallic with moderate
correlations. (b) Z vs JH for the system in (a) and selected
U . (c) Z vs electronic filling n and JH with U = W for a
5-orbital system. The strong suppression of Z with JH seems
connected to the n = 5 half-filled Mott insulator.

of such decoupling is not well understood.

It urges to clarify the nature of correlations in Hund
metals and its relationship with Mott physics. In this pa-
per we analyze the electronic correlations in multiorbital
systems (N = 2, 3...5 orbitals) as a function of interac-
tions and electronic filling n. We confirm that the doping
dependent increase of correlations with JH at moderate

http://arxiv.org/abs/1501.04607v2
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FIG. 2: (Color online) Quasiparticle weight Z vs intraorbital interaction U and Hund’s coupling JH for a 3- orbital system with
electronic filling (a) n = 0.5, (b) n = 1.0, (c) n = 1.5, (d) n = 2.0 (e) n = 2.5 and (f) n = 3.0 half-filling. The Mott transition, in
black, is found for the conmensurate values n=1,2,3 with different dependence on JH . Extended metallic regions with strongly
reduced Z are only found for filling close to half-filling. U and JH are respectively given in units of the non-renormalized
bandwidth W and of U . The system shows particle hole symmetry, results are also valid for electronic filling 2N − n.

interactions is directly connected to the Mott transition
at half-filling. However, contrary to what happens in cor-
related single-orbital systems the increase of correlations
with JH , as measured by the suppression of the quasipar-
ticle weight Z, does not necessarily imply a suppression
of charge fluctuations. We trace back this behavior to
the opposite dependence of intra and interorbital charge
fluctuations with Hund’s coupling. With simple energetic
arguments we explain the underlying phenomenology, in-
cluding how the spin polarization drives the orbital de-
coupling. Our study unveils differences between systems
with 2 electrons and those with other commensurate par-
tial fillings. We discuss a change of behavior at large JH
and U , related to the proximity of the Mott insulator.
To address the generic features of Hund metals we con-

sider degenerate 2D multiorbital systems with hopping t
restricted to the same orbital and to nearest neighbors
and bandwidth W = 8t. For the interactions we start
from the Hubbard-Kanamori Hamiltonian [10, 33].

Hint = U
∑

a

na↑na↓ + (U ′ − JH)
∑

a<b,σ

naσnbσ

+ U ′
∑

a 6=b

na↑nb↓ − JH
∑

a 6=b

c†a↑ca↓c
†
b↓cb↑

+ J ′
∑

a 6=b

c†a↑c
†
a↓cb↓cb↑ (1)

a is the orbital index, ↑ and ↓ the spin, na↓ and na↑ the
electron occupancy of a given orbital with spin ↓ or ↑. We
treat the interactions using a Z2 slave spin representation
[30, 34], and keep only density-density terms, see Supple-
mental Material (SM). That is, pair hopping and spin-
flip terms do not enter into the calculation [21, 22]. The
model is particle-hole symmetric with respect to half-
filling. We take U ′ = U−2JH, with U ′ the interorbital in-
teraction, as found in rotationally invariant systems [33].
Repulsive interactions require JH/U ≤ 0.33.
The quasiparticle weight Z provides a way to quantify

the correlations between electrons. Z measures the over-
lap between the elementary excitations of the correlated

and the non-interacting systems. It is equal to unity in
non-interacting systems, decreases with increasing corre-
lations and vanishes in Mott insulators. In Fermi liquid
theory it equals the inverse of the mass enhancement.
Fig. 1(a) shows in color plot the quasiparticle weight Z
as a function of U and JH for a five-orbital system with
six electrons, the filling of undoped iron superconductors.
Three regions can be distinguished: a metallic state with
moderate correlations in yellow-orange color; an insulat-
ing Mott state at large U in black, and a strongly cor-
related metallic state with reduced coherence in violet.
The critical Uc at which the Mott transition sets it de-
pends non-monotonously on JH [8]. At large values of
JH the system remains metallic even for large U [9].
The correlated metallic state, in the following Hund

metal, appears at finite JH in a wide range of param-
eters, including U < W . The way in which this region
depends on the interactions reveals the crucial role played
by JH on inducing the strong correlations which seem un-
related to the n = 6 Mott insulating state. Similar phase
diagrams are found in other cases, e.g. for 2 electrons
in 3-orbitals in Fig. 2(d) and for 2 and 3 electrons in 4
orbitals and 3 electrons in 5 orbital, in Fig. S1 in SM.
Hund’s coupling polarizes the spin locally. The small

Z in a Hund metal is due to the small overlap between
the non-interacting states and the spin polarized atomic
states[5, 7, 35]. The suppression of Z is thus concomitant
with an enhancement of the spin fluctuations CS , see
Fig. 3(a). Here CS =< S2 > − < S >2 with < S >= 0
and S =

∑

a=1,...,N(na↑−na↓). Arrows in Fig. 3(a) mark
J∗
H(U) the interaction at which the system enters into the

Hund metal defined empirically as the value of JH with
the strongest suppression of Z, i.e. the most negative
dZ/dJH value, after which Z stays finite, see Fig. S2 in
SM. Above J∗

H , CS reaches a value close to that of the
Mott insulator at this filling, showing that in the Hund
metal state each atom is highly spin polarized.
We now focus on the doping dependence of the corre-

lations. Fig. 1(c) shows Z as a function of the electronic
filling n and JH for U = W , far from the n = 6 Mott
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FIG. 3: (Color online)(a) Enhancement of spin fluctuations CS and suppression of Z with JH . U = 1.5W for 2 electrons in 3
orbitals (red), U = W for 6 electrons in 5 orbitals (black) and for 3 electrons in 4 orbitals (green). CS and Z are renormalized
to their JH = 0 value at the given U . Arrows mark J∗

H(U). The reduction of Z is concomitant to the enhancement of CS .
(b) Charge fluctuations CnT

and quasiparticle weight Z vs Hund’s coupling JH renormalized to C0

nT
and Z0, their value at

JH = 0 and the corresponding U , see legend. The enhancement of CnT
while Z is suppressed differs from the behavior of Mott

correlated states. (c) CnT
/C0

nT
vs JH for 5 orbitals with U = W and different electronic fillings n. Z decreases with JH for all

values in this figure and vanishes in the Mott state at n = 5 (not shown). (d) Intraorbital Cintra

n and interorbital Cinter

n charge
fluctuations vs U and JH for 6 electrons in 5 orbitals. With increasing JH , both Cintra

n and Cinter

n decrease in absolute value.
In the Hund metal Cintra

n quickly saturates to its value in the Mott state while Cinter

n decreases towards zero with JH .

transition. The strength of correlations shows a clear
asymmetry with electronic filling around n = 6. No spe-
cial feature is observed at n = 6 for this value of U what
confirms that the n = 6 Mott transition is not responsi-
ble for the strong suppression of Z. On the other hand
the entrance to the strongly correlated Hund metal ap-
pears at smaller JH as n approaches n = 5. Connection
with the Mott insulating state at half-filling is evident.

A clear doping dependence of correlations is also ob-
served in 3-orbital systems, Fig. 2. An extended region of
parameters with small quasiparticle weight, in violet, is
found only for fillings relatively close to half filling n = 3.
For smaller fillings Z depends more weakly on JH . The
dependence of the Hund metal region on the interaction
parameters for filling n = 2.5 in Fig. 2(e), closely follows
the n = 3 Mott insulating state, in black in Fig. 2(f).

The hallmark of Mott physics is the suppression of
charge fluctuations CnT

which vanish at the Mott transi-
tions. Here CnT

=< n2
T > − < nT >2=< (δnT )

2 > with
nT =

∑

a=1,...,N na, na = na↑+na↓, δnT = nT− < nT >
and< nT >= n. In single orbital systems the charge fluc-
tuations CnT

and Z have a similar doping and interaction
dependence. Consequently, very often, the suppression of
Z, is assumed to imply localization.

Fig. 3(b) shows the evolution of CnT
with JH and com-

pares it with that of Z, both quantities being normalized
to their JH = 0 value. Unexpectedly, Z and CnT

depend
differently on JH . For the system with 2 electrons in 3
orbitals Z decreases and CnT

increases with JH . That is,
contrary to what happens in Mott systems, the suppres-
sion of Z happens on spite of an increase of metallicity.
In the 6 electrons in 5 orbitals case the strong reduction
of Z comes along with a reduction of CnT

. However at

larger JH , Z continues decreasing, while CnT
increases.

The enhancement of CnT
with JH is reduced as half-

filling (n = 5) is approached, see Fig. 3(c). The different
dependence of Z and CnT

on JH implies that in Hund
metals the quasiparticle weight Z and the mass enhance-
ment are not good measures of the charge localization.
The increase of charge fluctuations with JH can be

traced back to the suppression of interorbital correlations
C inter

n . Accounting for the equivalency of all the orbitals

CnT
= N

(

C intra
n + (N − 1)C inter

n

)

(2)

with C intra
n =< n2

a > − < na >2=< (δna)
2 > the in-

traorbital fluctuations, δna = na− < na > and < na >=
n/N . C inter

n =< nanb > − < na >< nb >=< δnaδnb >
and a 6= b. C intra

n , by definition positive or zero, is largest
in the non-interacting limit. C inter

n is negative for repul-
sive interactions and it vanishes in the absence of interac-
tions as the charge in different orbitals is not correlated.
The entrance into the Hund metal has a very strong ef-
fect on C intra

n and C inter
n being both strongly suppressed,

see Fig. 3(d). Due to their different sign in Eq. (2) this
suppression has an opposite effect in CnT

. The increase
of CnT

with JH is driven by the interorbital correlations
which effect is enhanced by the degeneracy factor (N−1)
in Eq. (2). On the other hand, the suppression of CnT

at
J∗
H in the 6 electrons in 5 orbitals case in Fig. 3 is due to

that of C intra
n . Except at half-filling, C intra

n and C inter
n do

not vanish in the Mott insulator but their contributions
cancel each other leading to zero CnT

, see Fig. S3 in SM.
The phenomenology above can be understood by

studying the energy of the hopping processes. Let’s con-
sider two N -orbital atoms with n electrons (n ≤ N) and
assume that inside each atom the electron spins are par-
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allel to satisfy Hund’s rule. An electron which hops from
one atom onto the other one can end into (i) an empty
orbital with spin parallel to that of the occupied orbitals
with interaction energy costE↑↑ = U−3JH ; (ii) an empty
orbital with spin antiparallel to that of the occupied or-
bitals with Einter↑↓ = U + (n − 3)JH . (iii) an occupied
orbital with Eintra↑↓ = U +(n− 1)JH [36]. Particle-hole
symmetry considerations apply for n > N .
At half-filling, n = N , processes (i) and (ii) are blocked

by Pauli exclusion principle and process (iii) controls the
critical Uc(JH) for the Mott transition which strongly
decreases with JH , see Fig. 2(f). For other integer fillings
and large JH the Mott transition is controlled by process
(i) and Uc(JH) increases with JH [8], but processes (ii)
and (iii) are blocked at smaller interactions.
In the metallic state the process (i) is allowed and pro-

moted by JH . We ascribe the entrance in the Hund metal
at J∗

H to avoiding process (iii). This process is suppressed
by JH for n > 1 and it is directly connected to the Mott
transition at half-filling. Its suppression strongly reduces
the intraorbital double occupancy and C intra

n enhancing
the atomic spin polarization in the Hund metal.
Process (ii) is suppressed by JH for n > 3 and pro-

moted for n < 3 (as U ′ = U − 2JH). This introduces
a qualitative difference between systems with 2 electrons
and those with larger integer fillings, which causes that in
2-electron systems the suppression of Z and the enhance-
ment of CS with JH are smoother and favors the enhance-
ment of CnT

. Nevertheless, even when process (ii) is al-
lowed, the suppression of process (iii) indirectly reduces
the occurrence of atomic configurations with anti-parallel
spins in different orbitals (not shown).
The strong supression of Cintra

n =< |δna|2 > at the
crossover J∗

H(U) reduces the interorbital charge correla-
tions < δnaδnb >. The latter are further suppressed by
the reduction of the effective interaction between the elec-
trons in different orbitals, what produces orbital decou-
pling (measured by <δnaδnb>

<|δna|2>
): The interaction between

electrons in different orbitals is U ′ or U ′ −JH depending
if they have parallel or antiparallel spins, see Eq. (1). At
J∗
H the occurrence of atomic configurations with paral-

lel spin strongly increases while those involving opposite
spin become less frequent, effectively reducing the inter-
action between electrons in different orbitals to U ′ − JH
[37]. If JH is further increased the decoupling is enhanced
as the effective interaction U ′−JH = U −3JH decreases.
At JH/U = 0.33, this interaction and C inter

n vanish.
As discussed above, at intermediate filling and interac-

tions, around J∗
H(U) the dependence of the quasiparticle

weight and the fluctuations on the interactions is con-
trolled by the establishment of the atomic polarization.
On the other hand, at large JH and U , the behavior of
the locally spin polarized system becomes dominated by
the decrease with JH of the effective interaction between
spin-parallel electrons and by the proximity to the Mott
insulator, which happens at a larger critical interaction

with increasing JH . In particular, in the large JH and U
limit, both Z and CnT

increase with JH , see Figs. 1(b), S2
and S3. Moreover while, with increasing U , Z decreases
monotonously, CS increase for intermediate U but they
start to decrease at large U and JH see Fig. S4. This
behavior, driven by the interorbital spin fluctuations, is
contrary to what happens in the single-orbital Hubbard
model, for which Z and CS show an opposite dependence
on U in all the range of parameters.
In conclusion, we have clarified the nature of correla-

tions in Hund metals and its differences with those in
Mott systems. In Hund metals the enhancement of cor-
relations originate in the suppression of atomic config-
urations which reduce the magnetic moment, specially
intraorbital double occupancy, while the hopping of elec-
trons with spin parallel to the locally spin polarized
atoms is allowed. The suppression of hopping processes
involving intraorbital double occupancy links the correla-
tions in Hund metals to the Mott transition at half-filling.
However, contrary to what happens in Mott correlated
systems, the reduction of the quasiparticle weight Z in
Hund metals, can happen on spite of increasing charge
fluctuations. Therefore in Hund metals the quasiparticle
weight and the mass enhancement are not good measures
of charge localization. The tendency towards orbital de-
coupling in the Hund metal is due to the reduction of the
effective (and JH -dependent) interaction between elec-
trons in different orbitals produced by the predominance
of atomic configurations involving parallel spins. Finally,
we note that at large U and JH the dependence of the
quasiparticle weight and the spin fluctuations on the in-
teractions reveals a crossover to a region of parameters
controlled by the proximity to the Mott insulator.
The behavior discussed, together with other known

properties of Hund metals [8] as the enhanced width
of the Hubbard bands or the screening of the atomic
moments [38] is expected to play a prominent role in
iron superconductors, ruthenates and many oxides. This
is confirmed by the similarity between the behavior
in Fig.1 and that found with realistic models of iron
superconductors[16, 23, 27]. Nevertheless the physics of
these materials will be strongly influenced by the inequiv-
alency of the orbitals[16, 19, 21–23, 27, 29] specific for
each material, and not included here.
We thank L. de Medici for useful discussions and for

providing us with the DMFT results used in the bench-
mark in the SM and to G. Kotliar, G. Giovanetti, Q. Si,
R. Yu, A.J. Millis, R. Arita, M.J. Calderón, B. Valen-
zuela and the participants of the workshop ”Magnetism,
Bad Metals and Superconductivity: Iron Pnictides and
Beyond” at KITP Santa Barbara for useful conversations.
We acknowledge funding from Ministerio de Economia y
Competitividad via FIS2011-29689 and FIS2014-53219-P
from Fundación Ramón Areces, a fellowship from Univer-
sity of Rome La Sapienza and from the National Science
Foundation under Grant No. NSF PHY11-25915.
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SUPPLEMENTAL MATERIAL: SUPPLEMENTARY FIGURES
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FIG. S1: (Color online) Quasiparticle weight Z as a function of intra-orbital interaction U and Hund’s coupling JH for (a)
4-orbital system with n = 2 electrons , (b) 4-orbital system with n = 3 electrons and (c) 5-orbital system with n = 3 electrons.
U and JH are respectively given in units of the non–renormalized bandwidth W and of U . The system shows particle hole
symmetry and the results are also valid for electronic filling 2N − n. In (a) as in Fig.2(d) both with 2 electrons the Z contour
lines for U < 2W are more vertical than in the other cases, i.e. weakly dependent on JH . This is due to the different effect
which for this filling has JH on the energy of the transport processes in which one electron hops into an empty orbital with
opposite spin to that the atom, see text.
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FIG. S2: (Color online)(a) and (b) Color representation for the sign of the derivative of the quasiparticle weight with Hund’s
coupling dZ/dJH for a 5-orbital system with 6 or 4 electrons in (a) and a 3- orbital system with 2 or 4 electrons in (b). Yellow
is used for positive derivative, blue for negative derivative. In black, the Mott region with zero derivative. At intermediates
values of U and JH , Z is suppressed by JH . At large U and JH , Hund’s coupling promotes metallicity and Z increases with
JH . The increase of Z with JH found for small U and JH is always very weak. (c) Hund’s coupling J∗

H at which the strongest
suppression of quasiparticle weight Z is found vs U . electrons in 4 (green) and 5 orbitals (blue) and 2 electrons in 3 orbitals
(red). J∗

H and U are in units of the bandwidth W . Smaller J∗

H values are found for smaller average orbital filling x = n/N ,
except when comparing 2 electrons in 3 orbitals (x = 0.66) and 3 electrons in 5 orbitals (x = 0.60).
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FIG. S3: (Color online) (a) and (c) Charge fluctuations CnT
normalized to its value in the non-interacting case (U = 0 and

JH = 0) for 2-orbital system with 2 or 4 electrons in (a) and a 5-orbital system with 6 or 4 electrons in (c). This quantity varies
between 0 and 1, facilitating the comparison with the dependence of Z on interactions in Fig. 1 and 2 of the main text. (b) and
(d) Color representation for the sign of the derivative of the charge correlations with Hund’s coupling dCnT

/dJH for 2-orbital
system with 2 or 4 electrons in (b) and a 5-orbital system with 6 or 4 electrons in (d), corresponding, respectively to the charge
correlations in (a) and (c). Yellow is used for positive derivative, blue for negative derivative. In black, the Mott region with
zero derivative. In (d) there is a region of parameters with dCnT

/dJH < 0 which coincides with the region in Fig. S2(a) and
Fig. 1 where the suppression of Z with JH is strongest. In the case with 2 electrons in 3 orbitals in (b) at moderate interactions
charge correlations always increase with increasing JH , even for values of the interaction with dZ/dJH < 0.
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FIG. S4: (Color online) (a) Derivative of the spin correlation CS with U for a 3-orbital system with 2 electrons. At large U
and JH , when the atoms are locally polarized, the spin fluctuations decrease with U which promotes localization. The region
where this effect is found is similar to that shown in Fig. S2(b) with positive dZ/dJH . (b) Spin fluctuations CS as a function
of U for 6 electrons in 5 orbitals and JH/U = 0.30, 0.15, 0.015, 0.01 from top to bottom. For small JH/U CS increases with
U . CS saturates in the Hund metal prior to the Mott transition, marked with stars. Inset: Blow up of the large JH/U curves
at large U show non-monotonous CS with U in this region of parameters.(c) Spin fluctuations CS and quasiparticle weight
Z normalized to their value at JH = 0 and the given U = 1.5W as a function of JH . At J∗

H , Z strongly decreases due to
the enhanced spin polarization. However at larger values the behavior of these two quantities. CS saturates, while Z starts
increasing, due to the decrease of the effective interaction with JH .

SUPPLEMENTAL MATERIAL: THE ISING Z2

SLAVE-SPIN APPROACH

Approaches which use slave particles have being widely
used to deal with interacting fermions. In particular, in
multiorbital systems, slave–spin approaches, in Z2 [30,
34] or U(1) [27] versions, have proven to be very useful.
In this work we have used the Z2 slave-spin technique

developed in [30, 34] in its single-site approximation.
In the Z2 slave–spin approach the two possible occu-

pancies of a spinless fermion on a given site, nc = 0 and
nc = 1, are substituted by the two states of a pseudospin
spin-1/2 variable, Sz = −1/2 and Sz = +1/2:

|0〉 = |nf = 0, Sz = −1/2〉 |1〉 = |nf = 1, Sz = +1/2〉
nf is the occupation of an auxiliary fermion f , introduced
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FIG. S5: (Color online) Comparison between quasiparticle weight Z of computed with DMFT and the Slave Spin method
described. We show the for a model with 3 equivalent orbitals with semicircular density of states with n = 1, 2, 3 electrons
per site. A semicircular density of states with half-bandwidth D is used in both calculations. The DMFT data, taken from
[9], were computed using the complete interacting Hamiltonian including the spin–flip and the pair–hopping terms. Only the
density–density part (Ising approximation) is included in the slave-spin calculation.

to satisfy the anticonmutation relations. Two unphysical
states |nf = 0, Sz = +1/2〉, |nf = 1, Sz = −1/2〉 are
generated in the procedure. To eliminate them, the local
constraint nf = Sz + 1

2 has to be imposed.
In a multiorbital system each of the orbital and spin

species have to be treated in this manner. That is, a set of
2N pseudospin-1/2 variables Sz

iaσ and auxiliary fermions
fiaσ are introduced at each site i Here a = 1, N and σ are
the orbital and spin indices. On each site these variables
have to satisfy the local constraint:

nf
iaσ = Sz

iaσ +
1

2
, (S1)

what can be done with time-dependent Lagrange multi-
pliers fields λiaσ(τ).
Following the prescription in[34] the physical fermions

ciaσ are represented by

ciaσ = fiaσOiaσ , c†iaσ = f †
iaσO

†
iaσ.

Here Oiaσ is a pseudospin-1/2 operator defined as

Oiaσ =

(

0 γiaσ
1 0

)

with γiaσ a complex number[34], see below.
To solve the interacting problem several approxima-

tions are introduced [30, 34]: (i) Only the density-density
terms of the Hubbard-Kanamori Hamiltonian, Eq. (1) in
the main text, are included [39], (ii) The constraint is
treated on average, i.e. using a static Lagrange multi-
plier λaσ and the Hamiltonians of the pseudospin slave

variables and the auxiliary fermions are decoupled (iii)
The problem is solved in a single-site mean field approx-
imation, which render all variables site independent. Af-
ter these approximations the total Hamiltonian can be
written as the sum of two effective Hamiltonians, for the
auxiliary fermions and the pseudospins, Hf and HPS, to
be solved self-consistently at mean-field level.

The fermionic Hamiltonian for a generic multiorbital
system without orbital hybridization is:

Hf =
∑

a σ

∑

k

(Zaσ εaσ + ǫa − µ− λaσ) f
†
aσ(k)faσ(k),

(S2)
where µ is the chemical potential, ǫa the crystal field and
εaσ is the original fermionic dispersion. In this single-
site approximation the renormalization of the dispersion
is given by the quasiparticle weight

Zaσ = 〈Oaσ〉2,

self-consistently determined from the solution of the
pseudospin Hamiltonian.

HPS =
∑

aσ

haσOaσ +
∑

λaσ

(

Sz
aσ +

1

2

)

+
U ′

2

(

∑

aσ

Sz
aσ

)2

+ JH
∑

a

(

∑

σ

Sz
aσ

)2

− JH
2

∑

σ

(

∑

a

Sz
aσ

)2
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where haσ = 〈Oaσ〉
∑

k
εaσ(k)〈f †

aσ(k)faσ(k)〉.
In the case of a spin and orbital degenerate system

without spontaneous breaking of the symmetry, as the
one discussed in the main text, λa,σ, ha,σ and Za,σ be-
come orbital and spin independent and the corresponding
indices can be dropped. A convenient choice for γi,aσ = γ
in this case is[34] γ = 1√

n(1−n)
− 1

In Fig. S5 the quasiparticle weight Z calculated
within this Ising Z2 slave–spin approach for a system 3–
degenerate orbitals with n electrons per site is compared
with the DMFT results from [9], which include the full
rotationally invariant Hund interaction. Here we use a
semicircular density of states, different to the square lat-
tice with hopping to first nearest neighbors used in the
main text. An overall agreement between the two meth-
ods is observed. The Ising slave–spin approach captures
the different behaviors of Z observed for the whole range
of JH values. Quantitatively, the agreement is quite good
for n = 1, 3 being, Z and the critical Uc for the Mott
transition just slightly overestimated, as it is common in
slave variable approaches and in the Gutzwiller approxi-
mation. At intermediate filling (n = 2) and large JH , the
suppression of Z in slave–spin approach is weaker than in
DMFT. Moreover Uc is underestimated probably due to
a more prominent role played in these region of parame-
ters by the pair-hopping and spin-flip terms, neglected in
the calculation. The qualitative behavior, an extended
metallic region with reduced coherence, is in any case
well captured.
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