37 research outputs found

    Spectral Modes of Network Dynamics Reveal Increased Informational Complexity Near Criticality

    Full text link
    What does the informational complexity of dynamical networked systems tell us about intrinsic mechanisms and functions of these complex systems? Recent complexity measures such as integrated information have sought to operationalize this problem taking a whole-versus-parts perspective, wherein one explicitly computes the amount of information generated by a network as a whole over and above that generated by the sum of its parts during state transitions. While several numerical schemes for estimating network integrated information exist, it is instructive to pursue an analytic approach that computes integrated information as a function of network weights. Our formulation of integrated information uses a Kullback-Leibler divergence between the multi-variate distribution on the set of network states versus the corresponding factorized distribution over its parts. Implementing stochastic Gaussian dynamics, we perform computations for several prototypical network topologies. Our findings show increased informational complexity near criticality, which remains consistent across network topologies. Spectral decomposition of the system's dynamics reveals how informational complexity is governed by eigenmodes of both, the network's covariance and adjacency matrices. We find that as the dynamics of the system approach criticality, high integrated information is exclusively driven by the eigenmode corresponding to the leading eigenvalue of the covariance matrix, while sub-leading modes get suppressed. The implication of this result is that it might be favorable for complex dynamical networked systems such as the human brain or communication systems to operate near criticality so that efficient information integration might be achieved

    Dynamical noise can enhance high-order statistical structure in complex systems

    Full text link
    Recent research has provided a wealth of evidence highlighting the pivotal role of high-order interdependencies in supporting the information-processing capabilities of distributed complex systems. These findings may suggest that high-order interdependencies constitute a powerful resource that is, however, challenging to harness and can be readily disrupted. In this paper we contest this perspective by demonstrating that high-order interdependencies can not only exhibit robustness to stochastic perturbations, but can in fact be enhanced by them. Using elementary cellular automata as a general testbed, our results unveil the capacity of dynamical noise to enhance the statistical regularities between agents and, intriguingly, even alter the prevailing character of their interdependencies. Furthermore, our results show that these effects are related to the high-order structure of the local rules, which affect the system's susceptibility to noise and characteristic times-scales. These results deepen our understanding of how high-order interdependencies may spontaneously emerge within distributed systems interacting with stochastic environments, thus providing an initial step towards elucidating their origin and function in complex systems like the human brain.Comment: 8 pages, 4 figures, 2 table

    The Phi measure of integrated information is not well-defined for general physical systems

    Get PDF
    According to the integrated information theory of consciousness (IIT), consciousness is a fundamental observer-independent property of physical systems, and the measure Φ (Phi) of integrated information is identical to the quantity or level of consciousness. For this to be plausible, there should be no alternative formulae for Φ consistent with the axioms of IIT, and there should not be cases of Φ being ill-defined. This article presents three ways in which Φ, in its current formulation, fails to meet these standards, and discusses how this problem might be addressed

    An operational information decomposition via synergistic disclosure

    Get PDF
    Abstract: Multivariate information decompositions hold promise to yield insight into complex systems, and stand out for their ability to identify synergistic phenomena. However, the adoption of these approaches has been hindered by there being multiple possible decompositions, and no precise guidance for preferring one over the others. At the heart of this disagreement lies the absence of a clear operational interpretation of what synergistic information is. Here we fill this gap by proposing a new information decomposition based on a novel operationalisation of informational synergy, which leverages recent developments in the literature of data privacy. Our decomposition is defined for any number of information sources, and its atoms can be calculated using elementary optimisation techniques. The decomposition provides a natural coarse-graining that scales gracefully with the system’s size, and is applicable in a wide range of scenarios of practical interest
    corecore