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Abstract

Striking progress has been made in understanding cognition by analyzing how the brain is

engaged in different modes of information processing. For instance, so-called synergistic

information (information encoded by a set of neurons but not by any subset) plays a key role

in areas of the human brain linked with complex cognition. However, two questions remain

unanswered: (a) how and why a cognitive system can become highly synergistic; and (b)

how informational states map onto artificial neural networks in various learning modes. Here

we employ an information-decomposition framework to investigate neural networks per-

forming cognitive tasks. Our results show that synergy increases as networks learn multiple

diverse tasks, and that in tasks requiring integration of multiple sources, performance criti-

cally relies on synergistic neurons. Overall, our results suggest that synergy is used to com-

bine information from multiple modalities—and more generally for flexible and efficient

learning. These findings reveal new ways of investigating how and why learning systems

employ specific information-processing strategies, and support the principle that the capac-

ity for general-purpose learning critically relies on the system’s information dynamics.

Author summary

What is the informational basis of learning in humans, animals, or, indeed, artificial neu-

ral networks (ANN)? Furthermore, how can these systems learn to solve multiple tasks

simultaneously? These fundamental questions are, surprisingly, still not fully understood.

One advantage of studying ANNs is that we can precisely probe learning-related changes.
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Here we draw on a recent branch of information theory, partial information decomposi-

tion, to examine how different types of information support different learning goals, and

where, in ANNs. We show that adding noise to an ANN encourages it to keep copies of

information at multiple nodes, promoting robustness. In contrast, whenever flexible

learning is required, for instance when facing varied stimulus types or diverse tasks, indi-

vidual neurons work together to represent information more abstractly. This work sheds

light on how systems encode information differently according to their learning pressures,

which can help us better understand how and why the human brain uses particular forms

of information processing.

Introduction

A central goal in cognitive neuroscience is to understand how the brain processes information

to learn and behave intelligently; and a central goal in machine learning research is to recreate

these processes on a computer. Historically, this close partnership between cognitive neurosci-

ence and machine learning has been a fruitful symbiosis [1]. Although artificial neural net-

works are not perfect models of biological neurons [2], they are a valuable tool to investigate

how groups of neurons collectively represent and manipulate information [3]. Overall, the aim

of this interdisciplinary research effort is not so much to clarify the implementation details of a

particular instantiation of successful distributed information-processing (e.g., the human

brain), but to extract fundamental principles to allow a better design of a wide range of novel

cognitive systems [4].

Information theory provides an ideal conceptual framework for the study of distributed

information processing, motivated by the goal of understanding how groups of neurons store,

transfer, and modify information [5]. One particularly relevant tool for the analysis of such

processes is the recent framework of Partial Information Decomposition, or PID [6], that dis-

tinguishes the information held by a set of sources about a target variable into qualitatively dif-

ferent components: unique (present in exactly one source), redundant (provided by multiple

sources separately), and synergistic information (only available when considering multiple

sources jointly). Recent work has revealed a strong relationship between human high-level

cognition and synergistic information processing taking place in the so-called ‘central execu-

tive network,’ which involves the lateral prefrontal and parietal cortices, while redundant

information has been found to dominate in cortical areas responsible for perception and low-

level processing [7]. Synergy and integrated information, of which synergy is a constituent

component [8], have also been found to dominate in complex information processing taking

place within cellular automata [9,10], and its disruption has been associated with loss of con-

sciousness [11] and ageing [12]. However, despite these promising findings, the precise nature

of the underlying mechanisms resulting in the emergence of synergistic information and its

utility for computation remains unknown.

In addition to its application to neuroscience, PID is also rapidly gaining traction in the

field of machine learning. While the information bottleneck theory is one of the most well-

known applications of information theory to neural networks [13–16], the studies used Shan-

non mutual information which does not capture additional interactions between variables.

PID now offers an elegant framework for studying distributed information processing and

interactions between parts of a system, which becomes increasingly important as the field

moves towards further developing theory of deep learning, better interpreting existing models,

and designing new architectures and algorithms that may employ particular information
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processing strategies. Furthermore, this approach offers the possibility of understanding of

neuronal cooperation and organization in networks that are often difficult to interpret. Recent

work developed a differentiable PID measure [17,18], which has been used to specify local

learning rules optimizing for interpretable information-processing goals in neural networks

[19]. Other studies have used PID for feature selection [20], analyzing training dynamics in

convolutional neural networks [21], estimating redundancy in factor graphs [22], and studying

representational complexity in ANNs [23], among other work [24,25].

Considering that a crucial feature of human cognition is the ability to learn flexibly and

generalize across many different—potentially novel—settings, here we hypothesize that syner-

gistic information may be important for such general-purpose learning. Machine learning pro-

vides well-suited avenues for testing this hypothesis by investigating the computations

associated with, and the possible utility of, synergy. Although current AI models have yet to

reach the level of generality of humans, they have recently shown good multitask performance.

For example, “Agent 57” can outperform humans across all 57 Atari games [26], and Gato, a

multi-modal, multi-task, generalist policy, uses a single network to answer language questions,

caption images, play Atari and 3D exploration games, and control a real robot arm [27].

Although little is known about the information-theoretic properties of such networks, here we

propose that a closer investigation will provide a better understanding for the role of synergy

in general-purpose learning systems.

To develop these ideas, in this paper we employ simple artificial neural networks with sev-

eral different architectures in both supervised and reinforcement learning settings as a testbed

to investigate general information-processing principles related to learning. The main contri-

butions of this work are (i) to propose functional roles played by information decomposition

components in learning scenarios, and (ii) to establish a computational basis for the existing

evidence of synergy’s importance for complex cognition, with a specific relation to general-

purpose learning by supporting multi-modal integration.

Background: Partial information decomposition

One of the central measures of information theory is Shannon’s mutual information I(X;Y),

which quantifies the amount of information a random variable X provides about another vari-

able Y by measuring the extent to which knowing X reduces the uncertainty about the outcome

of Y.

Extending beyond the bivariate case, for a set of random variables (sources) X = (X1,. . .,Xn)
and another random variable (target) Y, the mutual information I(X;Y) can be separated into

distinct terms that describe the partial information contributed by subsets of sources about the

target (Fig 1B). As described earlier, these PID terms (or atoms) can either be unique (U),

redundant (R), or synergistic (S) and can be computed as described in the methods. For the

case with two sources, mutual information can be decomposed as

IðX1;YÞ ¼ RðX1;X2;YÞ þ UðX1;YÞ ð1Þ

IðX2;YÞ ¼ RðX1;X2;YÞ þ UðX2;YÞ ð2Þ

IðX1;X2;YÞ ¼ RðX1;X2;YÞ þ UðX1;YÞ þ UðX2;YÞ þ SðX1;X2;YÞ ð3Þ

Although PID proposes the distinction of unique, redundant, and synergistic information,

it does not prescribe a unique method for computing these measures and to date there is no

single widely-accepted method of doing so. Consequently, many different PID measures have
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been formulated which capture different aspects of multivariate information, some which have

been shown to provide a specific operational interpretation (e.g. the payoff in a suitably

defined game [28] or the compression through a suitably defined channel [29]). Although past

work has shown that in practice different PID measures tend to yield similar results [7,29], it

has also been shown that there are situations where different PID can strongly disagree [30].

Taking these considerations into account, we compute all measures using two different redun-

dancy functions, Imin [6] and IMMI [31], and a range of estimator parameters, to ensure our

results are consistent. Although these do not have a meaningful operational interpretation,

there are two reasons that make them very suitable for our study: 1) they have previously been

used to study neural data which we aim to explain using artificial neural networks; and 2)

unlike most other measures, Imin and IMMI are more pragmatically useful, since they allow us

to efficiently estimate synergy in systems with potentially many sources without computing

the full PID lattice (mathematically, in both cases the inclusion-exclusion principle can be

applied to yield a measure of “union information” in close form). For additional discussion on

the field of PID measures, we point the reader to the review of [32].

Fig 1. Information decomposition in neural networks. (a) A network solving two different tasks could potentially represent information about the two tasks

in several ways: it can use distinct populations of neurons for each task (orange, purple) or have some combination of overlapping neuron populations of

neurons (yellow) used for both tasks. (b) The decomposition of mutual information between two sources (X1, X2) and a target (Y). (c) Example of the set of

sources and target considered at different orders in a neural network. The neurons in one layer comprise the set of sources for the target in the subsequent

layer. In this setting, the entire layer of neurons is considered collectively as the target. Full-order PID refers to treatment of the entire set of neurons as the set

of sources, whereas 2nd-order PID treats pairs of neurons as the set of sources of which all possible combinations are computed and averaged.

https://doi.org/10.1371/journal.pcbi.1012178.g001
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Consider now a neural network learning two distinct tasks. The network can represent

these tasks in different ways. It can assign a particular set of neurons to one task, and a separate

set to the other (orange and purple neurons in Fig 1A). Alternatively, it could use the same

overlapping set of neurons to encode information about both tasks, distinguishing tasks by the

collective behavior and interactions of such neurons (yellow neurons in Fig 1A). The first

method specializes its neurons by designating them for particular tasks, whereas the second

method reuses its neurons for multiple tasks. In particular, the first method uses unique (and

potentially redundant if the same information is provided by several neurons) information to

solve the two tasks, and the second method uses synergistic information. Intuitively, the first

approach conveys specialization and robustness, while the second approach provides poten-

tially greater flexibility and reusability, as also suggested in prior work [33].

Mutual information can be decomposed differently at different scales and is dependent on

the selection of sources and targets. For example, each task-specific group of neurons can also

vary in its decomposition, such that the group solving Task B could be more synergistic than

the group used for Task A—even though the neuronal populations across tasks do not overlap.

These types of scenarios can be studied by considering different sets of sources in a network

over which to compute PID (Fig 1C): one could use all neurons in a layer as a single set of

sources and the joint state of the next layer as the target (full-order), or select all the combina-

tions of pairs of neurons in a layer as sets of sources and average the resulting information

atoms (2nd-order), or anything in between. Studying different scales can contextualize infor-

mation-processing behavior in terms of the interactions occurring between different sets and

subsets of system parts. With the conceptual framework of PID and the numerical estimators

presented in the methods, one can properly investigate the information decomposition of neu-

ral networks, to which we now turn our attention.

Results

We now present a series of experiments exploring the properties of synergy and redundancy

in small neural networks with two hidden layers of ten neurons each. First, we look at informa-

tion flow in networks solving logic gates, where the types of information needed to solve the

task are known. We then study a more complex setting in which logic gates are embedded and

extended in a 3D simulated environment and solved using reinforcement learning, either indi-

vidually or in a set of tasks. Finally, we explore networks learning multiple tasks further using

the NeuroGym suite of tasks inspired by cognitive neuroscience experiments [34]. Overall, our

experiments converge on synergy being associated with multi-modal integration and the

learning of multiple tasks, and redundancy with robustness.

Functional roles of information atoms in simple learning problems

We first study redundancy and synergy in small feedforward networks learning a copy

(COPY) or exclusive-or (XOR) logic gate involving two inputs (Fig 2A), which are well-

defined tasks with known informational requirements and few confounding factors. In partic-

ular, the processing done by the COPY gate involves no synergy, as it requires no integration

of information as it is solved by simply copying the first dimension of the input. Conversely,

an XOR gate is solved by integrating information from both dimensions of its input as it

reflects the parity of the set (i.e., if the inputs are similar or different). In fact, the XOR gate is

known to be maximally synergistic [35], as there is no reduction of uncertainty about the out-

put unless all input sources are considered jointly. We perform analyses at both the 2nd-order

and full-order scales to compare how information profiles vary depending on the number of

sources considered (Figs A and B in S1 Text); a discussion on our choice of order can be found
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in the methods. We refer to 2nd-order measures in text and figures unless otherwise specified.

We also perform the same experiments using networks with twice the number of neurons to

ensure our results are robust across different hidden layer sizes (Figs C-E in S1 Text). Finally,

we perform an analysis comparing the decomposition of different layers of the network (Figs

U and V in S1 Text; see methods).

Dropout removes irrelevant input information and increases hidden layer redun-

dancy. To study how learning pressures can influence the information profile of a network,

Fig 2. Effects of lesions and dropout on network information profiles. (a) White nodes represent 0 and black nodes represent 1, specifying the data used for

each logic gate. (b) Dropout increases redundancy across the hidden layers of the network for both COPY and XOR tasks (***P<0.001, ****P<0.0001,

independent samples t test; n = 20). By forcing the network to decrease its reliance on individual (sets of) neurons by randomly turning them off during

training, dropout encourages redundancy to overrepresent important information. Values represent probability density functions. (c) Lesioning by

permanently removing neurons during evaluation shows the causal role of synergy-rich neurons for task-performance, especially for tasks requiring integration

of information (XOR) (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, paired samples t test with Benjamini-Hochberg False Discovery rate correction;

n = 20). By increasing redundancy, dropout (denoted as p = 0.0 and p = 0.5) results in decreased reliance on individual neurons, allowing the network to be

more robust to their removal. For the XOR gate, which requires the integration of information to solve, even after applying dropout performance quickly

degrades when synergistic neurons are affected; this loss in performance is substantially attenuated if non-synergistic neurons are removed. Values represent

means ± SEM.

https://doi.org/10.1371/journal.pcbi.1012178.g002
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for each logic gate we apply four levels of dropout (p = 0.0,0.1,0.3,0.5), a popular regularization

method in deep learning that randomly omits different neurons (with some given probability)

in each forward pass during training. This differs from “lesioning” in that it is applied during

training, and a neuron is not permanently rendered inactive. This forces the network to be

robust and able to adapt to random perturbations applied to its neurons, rather than strongly

dependent on particular sets of neurons. Furthermore, by applying dropout, we disrupt syner-

gistic and unique information because they rely on individual neurons that may be randomly

“turned off,” while redundant information persists in other neurons that remain “on”—mak-

ing it an interesting paradigm for investigating the resulting learned information profiles.

By applying increasing amounts of dropout, we find that redundancy and synergy from the

input significantly decrease for networks solving COPY gates, which rely only on the first

input dimension and learn to ignore the second dimension, but are preserved for XOR gates,

which require both dimensions to successfully complete the task (Fig F in S1 Text). Thus,

dropout encourages the removal of task-irrelevant information from the input. This may be

due to the increased risk of information interference dropout yields—if an important neuron

which modulates the input from an unimportant neuron is removed, the network could be

influenced in a disadvantageous way.

Dropout also causes networks to over-represent important information. As shown in

Fig 2B, applying dropout significantly increases redundancy in the hidden layers for both logic

gate tasks. As the risk of a neuron’s removal increases, the network must compensate by ensur-

ing that a robust, redundant representation of important information remains, decreasing the

reliance on individual (sets of) neurons (i.e., unique information). Thus, with limited informa-

tion resources and the heightened risk of information loss, task-irrelevant information is more

likely to be removed in favor of task-relevant information, which is instead over-represented.

Our finding provides an explicit measure of redundancy, complementing recent work [36]

that has also suggested dropout to increase redundancy based on an increase in clustering

driven by the similarity of neurons.

Performance relies on synergistic neurons. Using the trained logic gate networks, we

perform lesioning experiments to evaluate whether a neuron’s synergy is predictive of its

importance to the network. In lesioning experiments, each neuron’s pairwise synergy (average

synergy with every other neuron in the same layer) is computed. We then permanently, itera-

tively remove the most (or least) synergistic neurons from each layer by setting their outgoing

activations to 0 and evaluate subsequent performance. This differs from dropout in that lesion-

ing is performed after training during evaluation, rather than during training, such that the

network is unable to modify its parameters. By using networks with and without dropout

applied, we can observe how dropout, and its resulting increased redundancy, influences the

reliance on synergistic and non-synergistic neurons for performance.

Lesion experiments reveal that synergistic neurons are more critical for performance than

non-synergistic neurons (Fig 2C), especially for tasks requiring the integration of information

(e.g., XOR). Synergistic neurons have less robust representations—the removal of one syner-

gistic neuron can change the information carried by all of the sources acting synergistically

with it, while the same is not true for redundant or unique information. Thus, synergy-rich

neurons are more sensitive and their removal decreases performance more than synergy-poor

neurons.

These results further show the effects of dropout on increasing robustness of the network

via increased redundancy: with higher dropout, more minimally-synergistic neurons can be

removed without disrupting performance as their information is overrepresented through an

increase in redundancy. However, the XOR logic gate networks still remain highly sensitive to

a disruption in synergistic neurons even after dropout is applied, exemplifying the importance
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of synergy for tasks requiring integration, as well as the vulnerability of such representations.

Conversely, because the COPY logic gate networks do not need to integrate information in

order to solve the task, dropout instead reduces the number of synergistic neurons and the reli-

ance on them such that their removal does not disrupt performance until over half of their

neurons have been removed.

Compositional tasks in 3D RL environment

As a second step in our investigation, we extend the idea of solving logic gates to the context of

reinforcement learning agents in Animal-AI [37], a 3D environment with simulated physics

used for assessing agents on cognitive common-sense physical reasoning tasks [38] (experi-

mental details can be found in the Methods). These experiments are motivated by the interest

in studying synergy in the context of task-transfer and how agents may allocate their parame-

ter space when learning a novel task after specializing on an initial task—and, more broadly,

on how the structure of new tasks could influence information decomposition. In effect, con-

trasting with the previous tasks in which training happens directly on the desired input and

output, agents in these reinforcement learning scenarios learn through trial-and-error interac-

tions with their environment while trying to maximize a reward function. This significantly

increases the difficulty of the task as reward is delayed, the environment contains a much

larger state space, and the observation space includes additional (task-irrelevant) inputs about

the environment. With these added challenges, the agent must use information about the

arena walls to determine which platform direction (forward or backwards) to move to and act

accordingly in order to retrieve the positive reward and solve the task.

Information profiles reflect specific task demands. We train models to perform either

an individual task or a set of tasks in sequence, usually denoted in AI research as a curriculum.

Each task consists of several environment configurations (each corresponding to a configura-

tion of logic gate inputs) that are interleaved across episodes. In the curriculum experiments,

models are trained on each task until reaching a reward threshold or a maximum number of

training steps, after which they are trained on a new task.

Each considered task follows a similar design in which the agent aims to solve a problem

based on the object-type of the barriers surrounding it (Fig 3). Specifically, the agent receives

as input three raycasts (indicating the type of the objects to its front, left, and right), and as out-

put the agent can move either forward or backward into a pit to obtain a reward. The object-

type of the barriers encodes three input bits (wall being 0, cardbox being 1), and the position

of the reward encodes the correct output (forward being 0, backward being 1). To successfully

solve the task, the agent must decide based on the barrier types which direction to move, in

order to retrieve the positive reward. The direction of the reward corresponding to the config-

uration of the barrier types is determined by the logic gate task being performed, which

includes the same gates as in the previous experiments (2-Bit COPY and 2-Bit XOR; Fig 3B,

plus a 3-Bit extension of the XOR gate (where the correct output is the parity of all inputs;

Fig 3C), and a “Distance XOR” task where the length of the platform is increased, introducing

a longer delay between action and reward (Fig 3D).

Our results show that networks increase their synergy as they learn new tasks, and that the

integration of an additional source of information specifically drives this behavior (see

Fig 4A). Synergy significantly increases from the 2-Bit XOR task to the 3-Bit XOR task, despite

agents not being able to learn the second task to perfect accuracy, whereas synergy remains

constant across all Distance XOR tasks (Fig 4B), even when learned accurately. Although the

3-Bit XOR alone does yield more synergy than the 2-Bit XOR task alone, even when the 3-Bit
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XOR task is not accurately learned in the curriculum, the learning process of the new task

drives an increase in synergy.

Conversely, the Distance XOR curriculum does not drive an increase in synergy, although

agents successfully learn all tasks. The main factor distinguishing the 2-Bit to 3-Bit XOR cur-

riculum from the Distance XOR curriculum is that the former requires integration of an addi-

tional source (3 bits instead of 2). Instead, the latter requires learning new tasks, but does not

require the incorporation of any new sources of information or any modification in its pro-

cessing—only the association of more states with a particular learned action using the same

mapping from existing sources. Overall, these differences in synergy between curricula high-

light a difference in the complexity of the set of tasks being learned, as sets of tasks that are

more simple (e.g., using few sources of information in a specialized manner) do not drive an

increase in synergy, while more complex tasks dependent on the integration of several sources

do. This suggests that synergy is specifically related to the learning of multiple complex tasks

in which multiple information sources have to be integrated to yield novel behavior. Finally,

we compare the level of synergy in different layers of networks (Figs W and X in S1 Text; see

Methods).

Effect of learning multiple diverse cognitive tasks on synergy

Our final set of experiments seeks to analyze networks learning multiple cognitively-inspired

tasks, and investigate how learning a set of tasks requiring the capacity to integrate different

modalities compares to a set of tasks relying on a single modality. When trained on a non-sta-

tionary sequence of tasks (for example, a sequential curriculum), neural networks often suffer

Fig 3. Animal-AI tasks. (a) An image visualization of the Animal-AI environment [37] from the position of the agent for the ‘01’-input 2-Bit XOR

configuration, where the ‘0’ gate output corresponds to a reward situated in the pit behind the agent. The agent receives raycast observations (rather than pixel

inputs) of the environment from its position, which occlude the content of the pits. (b) An aerial view of the ‘10’-input 2-Bit XOR configuration, where the left

cardbox barrier represents a ‘1,’ the right wall barrier represents a ‘0,’ and the backward-relative-to-agent position of the green reward represents a ‘0’ output of

the gate. The orange lines represent the orientation of the raycasts projected from the agent. (c) The configuration of the 3-Bit XOR task for ‘001’-input, where

the additional barrier in front of the agent represents a third logic gate input. (d) Example configurations (each part of a separate task corresponding to

platform-length) for the Distance XOR set.

https://doi.org/10.1371/journal.pcbi.1012178.g003
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from interference as they update parameters to learn a new task that potentially disrupt setups

that were important for solving previous tasks, resulting in a phenomenon known as ‘cata-

strophic forgetting’ [39]. Analyzing networks that can remember (rather than forget) their

entire training curriculum allows us to study how information profiles are influenced by learn-

ing and solving multiple (versus single) tasks. With this motivation, we use two different train-

ing protocols for each pair of tasks: sequential training, which does not prevent forgetting the

first task trained on, and interleaved training, which forces the network to retain the capacity

to solve both tasks.

Studying RNNs learning decision making tasks. We explore information decomposition

in the hidden layer of recurrent neural networks (RNN)—a simple form of memory—on tasks

requiring integration over time. This model is used to solve tasks taken from the NeuroGym

Fig 4. Relation of compositional tasks and synergy in Animal-AI. (a) Synergy significantly increases from the end of training on the 2-Bit XOR task to the

end of training on the 3-Bit XOR task, driven by the addition of a third source of information to integrate (**P<0.01, paired samples t test; n = 20). Values

represent probability density functions. (b) Synergy does not significantly increase in the Distance XOR curriculum (n.s., not significant, paired samples t test;

n = 20), likely due to the fact that each subsequent task requires the same integration of sources and only varies in the number of times an action must be

performed to reach the reward. This could be done easily by ignoring global position and object distance or by extending the number of environment states

associated with an action, without additional integration of information. Values represent probability density functions. (c) The information decomposition of

a network is influenced by the task it’s trained on and is qualitatively different across tasks. Distance XOR refers to Distance 10 XOR. Values represent

probability density functions.

https://doi.org/10.1371/journal.pcbi.1012178.g004
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environment [34], a toolbox of cognitive neuroscience tasks for training ANNs. Previous work

has used this framework to compare ANNs to animal studies, for example in studying popula-

tion gating of task-relevant features in the primary auditory cortex of rats [40], and replicating

suboptimal behavior produced by structural priors in rats [41]. We use a subset of their collec-

tion of decision-making tasks, referred to as the ‘DM family’ (DM1, DM2, CtxDM1, CtxDM2)

in [42]. This set of tasks is based on various decision-making tasks used in neuroscience and

psychophysics [43–45], involving the presentation of two simultaneous stimuli (e.g., numeric

value of the input at a particular dimension) within a specific modality (set of input dimen-

sions; e.g., DM1 presents stimuli in modality 1 and DM2 in modality 2), after which models

must indicate which stimulus is stronger (higher in value). In contextual decision-making

tasks (CtxDM1, CtxDM2), a second set of stimuli is also presented in the other modality (the

remaining set of input dimensions) and must be ignored. In non-contextual tasks, stimuli are

not presented in the other modality. We refer the reader to [34,42] for a detailed description of

all aforementioned tasks. For each task, a set of consecutive trials is given as input to the RNN.

Each trial consists of an initial fixation phase, followed by stimuli, and ending with a decision-

making period. To successfully solve a task, the model must integrate stimulus information

over time to make its final decision.

To better understand the relationship between synergy and the curriculum of tasks being

learned, we compare networks trained on pairs of tasks we define to be congruent or incongru-

ent. In this context, congruence refers to the similarity between both tasks and whether learn-

ing one task may aid in learning of the other task (such that transfer of performance is

possible). In our experimental design, congruent tasks are defined as the pairing of decision-

making tasks using the same modality (DM1&CtxDM1; DM2&CtxDM2) and incongruent

tasks are those using different modalities (DM1&DM2; DM1&CtxDM2; DM2&CtxDM1;

CtxDM1&CtxDM2). Learning congruent tasks requires attending to and integrating informa-

tion from a single input modality and ignoring stimuli in the other modality, while learning

incongruent tasks requires switching between attending to one and ignoring the other of two

modalities, depending on the task. We further compare networks learning a curriculum of

tasks sequentially and networks learning both tasks simultaneously through interleaving

(Fig 5A). We do not use any continual learning methods to prevent catastrophic forgetting in

either case. Therefore, sequential learning presents a condition where forgetting a previously

experienced task could potentially occur while interleaved learning forces the network to solve

both tasks.

Solving diverse sets of tasks increases synergy. Our results show that networks trained

on congruent tasks yield similar levels of synergy and accuracy in both sequential and inter-

leaved training regimes (Fig 5B). The similarity of congruent tasks allows for easy transfer, as

their learned parameters can be reused across tasks without strong interference, achieving

comparable performance in both sequential and interleaved protocols. Because both tasks are

similar and only require attending to and integrating from a single modality, networks trained

sequentially can reuse their representations for both tasks and achieve adequate performance,

without accommodating additional information. We suggest that because two congruent tasks

require information to be integrated from only a single modality, levels of synergy are lower

for all training settings than for two incongruent tasks.

In contrast, networks trained on incongruent tasks fall in different clusters depending on

the training regime (Fig 5C). In effect, interleaved training yields clusters with higher synergy

and accuracy, whereas sequential training yields clusters with lower synergy and accuracy.

This occurs because sequential training of incongruent tasks leads to some forgetting of the

first task due to interference, leading to lower accuracy, while interleaved training forces the

network to solve both tasks resulting in higher accuracy. Furthermore, networks trained with
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Fig 5. Synergy increases with the solving of incongruent tasks. (a) In the sequential protocol, networks are trained on each task in a single block sequentially

(red and blue in panels b-c) and forgetting can occur. In the interleaved protocol, networks are trained on both tasks simultaneously (orange in panels b-c) and

thus are both solved. (b) Congruent tasks yield similar accuracy and synergy for both training protocols. Values represent individual data points. (c)

Incongruent tasks yield distinct accuracy-synergy clusters based on training protocol. Sequential training yields lower synergy corresponding to worse

performance, while interleaved training performs better with higher synergy. Values represent individual data points. (d) Training with interleaving yields

significantly higher synergy than training sequentially for incongruent tasks, but not for congruent tasks (**P<0.01, ****P<0.0001, independent samples t test

with Benjamini-Hochberg False Discovery rate correction; n = 20). Values represent the difference of means of networks trained with interleaving versus

sequentially. (e) Networks accommodating two incongruent tasks (via interleaving) yield significantly higher synergy than those accommodating two

congruent tasks (****P<0.0001, independent samples t test; n = 60). Left: values represent probability density functions. Right: values represent means.

https://doi.org/10.1371/journal.pcbi.1012178.g005
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interleaving have an increased capacity to integrate information from both modalities in order

to adequately perform both incongruent tasks, resulting in a higher level of synergy compared

to networks trained sequentially.

Overall, in networks trained with interleaving, the amount of synergy is significantly higher

for incongruent tasks compared to congruent tasks, and is consistently higher for individual

pairs of incongruent tasks than pairs of congruent tasks (see Fig 5E). This suggests that the

capacity to integrate and use information from several modalities (as in incongruent tasks)

results in a higher proportion of synergistic information compared to that yielded by a single

modality (as in congruent tasks). In other words, synergy is related to a system’s ability to com-

bine different sources of information flexibly for distinct tasks. We speculate that this insight

may help to explain recent empirical findings showing a higher synergy associated with the

brain’s associative cortices, which integrate information from multiple sensory systems, in

contrast to unimodal brain areas such as sensory or motor cortices [7].

Furthermore, by contrasting networks with interleaved vs. sequential training we can attri-

bute this synergy increase specifically to the capability of simultaneously solving multiple

incongruent tasks (Fig 5D). Sequential training of incongruent tasks results in the forgetting of

the first task and a corresponding drop in performance as well as a drop in synergy (compared

to interleaved training), which is related to the fact that the network is only using information

from one modality at a time. This doesn’t hold for congruent tasks, however, for which both

interleaved and sequential training result in similar levels of both performance and synergy.

This results in synergy being specifically linked with scenarios where the network needs flexi-

bility to adapt between tasks requiring integration of different modalities—and, in these cases,

synergy is highly correlated with performance.

Discussion

This paper presents a series of experiments using neural networks in a variety of tasks and

learning settings, and examines their internal representations using the Partial Information

Decomposition (PID) framework [6]. Based on our results, we draw several interpretations of

the functional roles played by different forms of information, and suggest their relation to

learning in artificial and biological neural networks.

Functional roles of information atoms

We start by delineating the functional roles of redundancy, unique information, and synergy

in learning contexts.

Redundancy. Although redundant information makes less efficient use of neuronal

capacity, it grants robustness to the network. In effect, over-representing important informa-

tion (i.e., encoding it in multiple units) is an effective way to ensure that it will be propagated

through the network, even in the presence of possible interferences. Applying perturbations to

the network during training—such as dropout—incentivizes such reliability, which naturally

leads to an increase in redundancy. Furthermore, after training with dropout, these networks

resist performance drops caused by lesions to a much higher degree than networks trained

without dropout. In the human brain, redundancy dominates lower-level cortical regions, par-

ticularly in sensory and motor areas [7]—which could be due to a similar need to over-repre-

sent important sensory information in order to extract critical features of incoming data and

resist perturbations (e.g., noise).

These findings have interesting parallels with previous analyses of neural networks based

on the information bottleneck principle [13], which uses mutual information to bound opti-

mal networks trading off information loss due to compression and information preserved
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about a desired output [14–16]. In agreement with that line of work, the results of our logic

gate experiments show that dropout acts as an information bottleneck through its increase of

redundant information and pruning of task-irrelevant information—the mutual information

between the network and the input is decreased (via removal of task-irrelevant features), while

the mutual information about the desired output is increased (via higher redundancy). How-

ever, our results also reveal phenomena beyond the usual formulation of the bottleneck: our

work shows that dropout not only changes the total mutual information, but it also changes

the structure of that information by altering its composition. This finding emphasizes the fact

that it is not only the content of a task, but also how it is learned, that affects the information

processing strategy adopted by a cognitive system.

Our interpretation of dropout provides a complementary perspective to the classic view of

dropout as preventing complex co-adaptations [46,47]. Rather than learning complex, distrib-

uted ‘co-adaptations,’ which may link correlations in the input between task-relevant and task-

irrelevant information, dropout effectively sparsifies the network by increasing the risk of los-

ing information, causing the network to learn to overrepresent task-relevant information

(redundancy) while decreasing information coded across many neurons, which has a higher

risk of being disrupted (reduced synergy), and to discard task-irrelevant information which

may interfere.

Unique information. Unique representations provide specialized encoding of informa-

tion, whereby encoding can take place in a single neuron rather than requiring a set of neurons

to operate as a distributed representation (as is the case for synergy). Such specialized repre-

sentations are particularly efficient when a network consistently performs the same task or sev-

eral tasks with the same substructure, or when it is not required to integrate multiple sources

of information.

We speculate that the utility of unique information could be harnessed by functionally spe-

cialized circuits yielded by evolution and early development, especially in sensory cortices. The

one-to-one mapping of simple receptive fields in the primary visual cortex is a clear example

of such specialization in the brain. High-level cognition, in contrast, requires the integration of

information from several cortical regions being in principle more diverse and less stable than

processes associated with low-level feature extraction. Nevertheless, regardless of what cogni-

tive process is occurring in higher cortical regions based on visual input, the visual cortex

remains a specialized and stable region for the subtask of visual feature extraction, rather than

other sensory functions. For these types of tasks, the flexibility that may be provided by syner-

gistic representations and the associated learning processes are not necessarily beneficial. The

empirical evaluation of these conjectures is an interesting avenue for future investigations.

Synergy. Perhaps one of the greatest functional advantages of synergy is that it can encode

more information than other information atoms for a given population size [29]. In effect, in

contrast with redundancy and unique information, synergy relies on combinations of neurons,

which makes its informational capacity grow exponentially with system size. Synergistic infor-

mation, however, is also more vulnerable to noise [10], because a distortion in a single source

could disrupt information synergistically held together with other sources. This vulnerability

to noise may partially explain why networks exhibit higher levels of synergy at comparatively

lower orders rather than higher orders [25] as an attempt to minimize the effect of losing syn-

ergistic information with several neurons.

Our experiments find that the removal of maximally synergistic neurons yields a larger

drop in performance compared to minimally synergistic neurons. Building on the above dis-

cussion, this finding can be explained along three—not mutually exclusive—lines of reasoning:

(1) synergistic neurons may be encoding more information collectively than other neurons

encode individually with other forms of information, (2) this information is necessary for
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integrating several sources of information, and (3) this total information is more vulnerable to

perturbations because it can be altered by a disruption in a single source. Future work may

seek to disentangle the relevance of each of these potential causes in driving this effect.

Synergy facilitates flexible general-purpose learning

In addition to the functional roles highlighted above, an important overarching result is the

association between synergy and the learning of multiple tasks. Results across all our experi-

ments demonstrate that synergy supports integration in networks solving multiple tasks. Spe-

cifically, our logic gate experiments show that performance relies on synergy-rich neurons for

tasks requiring the integration of multiple sources of information, and that these neurons are

more sensitive to perturbations. Results in the Animal-AI experiments show that the incorpo-

ration of additional sources of information when learning multiple tasks drives an increase in

synergy, as opposed to learning multiple tasks that do not substantially change the processing

of information sources. Thus, the complexity (loosely understood here as relying on integrat-

ing various information sources in flexible and diverse ways) of a task set relates to the degree

of synergistic information processing it elicits. Finally, results in NeuroGym decision-making

tasks show that synergy increases with a network’s capacity to simultaneously integrate infor-

mation from several modalities for different tasks. Altogether, these findings support a link

between synergistic information processing and the ability to perform multiple complex tasks,

which require the flexibility to integrate and process various sources of information in differ-

ent ways. In addition, we hypothesize several other functional advantages synergy could pro-

vide in learning systems performing several tasks.

The first hypothesis is that, in addition to providing additional capacity for modality inte-

gration, synergy could be a response to the learning pressure of having to encode more task-

relevant information overall in the neuronal information space—which, in the case of our

experiments, is severely constrained by size. Thus, in order to successfully solve two or more

tasks requiring the integration of diverse sources, representations may need to be encoded in

increasingly efficient manners—a feature which is provided more readily by relying on synergy

than unique or redundant information. Performing increasingly complex tasks could have a

similar effect as the number of task-parameters and variables increases, and a higher number

of information sources and proportion of information must be integrated and encoded in a

network. In this way, a complex task could just be seen as a collection of many smaller and

simpler tasks.

A second hypothesized utility of synergy is its ability to represent information in a structur-

ally different way. Whereas unique information can provide information along a single dimen-

sion for each feature encoded by a source, synergy could provide higher-dimensional

representations across several neurons signifying distance between different features and neu-

ronal encodings. This could aid in representing structure and similarity across and within

tasks, providing increased flexibility for generalization. Alternatively, synergistic information

could be used for integrating other (possibly specialized) representations, potentially occupy-

ing some low-dimensional subspace.

Implications for cognitive and computational neuroscience

Our results and hypothesized functions for synergy in the context of general-purpose learning

are complementary to those observed in the brain. Within cognitive science, the division of

complex tasks into simpler sub-tasks has been proposed for many decades as an important

mechanism for solving almost any cognitive goal [48]. In addition, this parsing of tasks into

sub-tasks has been associated with the prefrontal parietal network in brain-scanning
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experiments [49–52]. This brain network has been shown to preferentially support synergistic

forms of information processing. For instance, [7] found that synergistic information is higher

in regions of the brain that are especially responsible for complex human cognition (particu-

larly association cortices in frontal and parietal regions, including the default mode and execu-

tive control networks), and that redundant information is higher in areas responsible for

perception and low-level cognition (particularly primary motor and sensory cortices). The

increased synergy in higher cortical regions may be explained by their need and capacity to

integrate information from other brain regions, encode and learn a vast information space

throughout life, and reuse or relate this information flexibly in order to generalize to new set-

tings [53–55].

In addition, just as synergy could contribute to creating higher level representations and

structure in the context of artificial neural networks, synergistic brain networks tightly overlap

with regions that integrate information [11]. Whereas low-level brain regions may benefit

from having redundant and specialized representations that are more robust and, correspond-

ingly, comparatively less adaptable after development, higher cortical areas continue to have

the responsibility of learning throughout life, reflected in their information decomposition.

In addition to studies featuring information-decomposition analyses of aggregate neural

signals, such as fMRI, which initially motivated the current work, other work has used PID to

analyze computations at the population and single neuron levels, which offer a more natural

analogue to ANNs. One study [56] found that in in vitro spiking cortical neurons of mouse

somatosensory cortex, greater recurrent information flow (in terms of number of recurrent

edges and strength of connectivity) was associated with higher synergy, whereas greater feed-

back relative to feedforward information was found to result in less synergy. In alignment with

the authors’ discussion, our study suggests that this may be explained by the importance of

recurrent connections for lateral integration of multiple features, which elicits increased syn-

ergy, whereas feedback may reduce the variance of feedforward information and its corre-

sponding strength, perhaps performing less integration of distributed sources of information

and instead specializing along certain pathways. While other studies have recognized the utility

of synergistic processing, many have also highlighted the important role of redundancy in neu-

ral computation. For example, noise correlations in the association cortex of mice were shown

to predict better task performance despite decreasing sensory information [57]. One explana-

tion offered was that such correlations are the result of redundancy in neural representations

used to enhance signal propagation. Although these results seemingly conflict with other evi-

dence of association cortices being highly synergistic, the particular study used Pearson corre-

lation and PCA, both of which cannot reveal the separate contributions of unique, redundant,

and synergistic effects, and thus it is difficult to evaluate exactly how these findings translate to

the framework of PID specifically. Nevertheless, other work has indeed revealed that increased

redundancy is associated with correct behavioral responses related to perceptual discrimina-

tion in the mouse auditory cortex [58]. This aligns with our finding that redundancy offers

robustness in the presence of noise, and our prediction that such robustness is especially real-

ized in low-level sensory cortices.

Our study of the relationship between ANNs and biological neural networks has interesting

parallels to the study of distributed versus localist processing. In particular, parallel distributed

processing (PDP) models from psychology [59–61] claim that the brain’s encoding of informa-

tion is distributed, rather than represented locally in specialized representations, and non-sym-

bolic. Indeed, the predecessors of modern deep learning models, PDP models have been

successful in helping to explain computation underlying cognition. However, theories about

localist processing have found support in ANNs which, although designed to be parallel and

distributed, also appear to develop semantically meaningful categories within specialized units.
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Our work further unites these two perspectives, as we observe networks strike a balance

between specialization and redundancy versus distributed synergistic representations. We sug-

gest that both localist and distributed forms of information processing may be utilized in dif-

ferent settings, depending on the type of computation being performed, noise, and perhaps

other factors such as the environmental statistics related to the information being represented.

Related to the current paper, deep learning has been previously used to study representa-

tions elicited by networks performing multiple tasks. Prior work has shown that distinct func-

tional units emerge in networks trained on multiple tasks, becoming specialized to specific

sub-task features [42], that networks learning multiple tasks naturally produce abstract repre-

sentations [62], and that networks performing context-dependent tasks use task representa-

tions lying on a low-dimensional and orthogonal manifold [63]. It remains an open question

how and where information decomposition fits into these and other prior findings, which

future work should investigate.

In addition to neurons that respond selectively to particular stimuli (pure selectivity), there

also exist, especially in higher-order cortical regions such as the prefrontal cortex and hippo-

campus, neurons that respond to diverse sets of stimuli and tasks, rather than performing a

single specialized function. These sets of neurons are said to have (nonlinear) mixed selectivity

(NMS), exhibiting complex responses to different task parameters. Recent work has shown

that NMS neurons support flexible behavior and complex cognition [64]. We suggest that syn-

ergistic information processing may be closely related to NMS neurons in the brain. In partic-

ular, we predict that neurons exhibiting NMS are synergistic and neurons exhibiting pure

selectivity have predominantly unique and redundant representations. Future work should

study the relation of information decomposition to neuronal selectivity, as it could provide

new approaches for understanding the information processing of various neuronal

populations.

Limitations and future work

PID is a relatively recent theoretical framework, and as such its practical applications are often

faced with certain limitations [32]. Perhaps the most important of these is that the number of

PID atoms grows super-exponentially with the number of sources [6]—a problem that we

bypass here by averaging across small subsets of neurons. Furthermore, it seems increasingly

clear that there is no universal redundancy function, and that different formulations capture

different aspects of multivariate information. In this paper we address these issues by validat-

ing our analyses by using two different redundancy functions (IMMI [31], and Imin [6]). We are

excited by other recent work that has developed PID for application in multivariate settings

and continuous variables [18,65–67] and has applied such multivariate measures to deep neu-

ral networks [23]. Future work should investigate ways of scaling PID to larger systems and

clarify the relationship between different redundancy functions.

In addition to the PID-specific issues above, there is a more general difficulty that arises

when computing information-theoretic quantities from data: to estimate these, one needs to

know (or accurately approximate) the probability distribution of the observed data [68]. This is

particularly challenging in neural networks with non-linearities, such as rectified linear units

(ReLUs). In the specific case of neural networks, this issue has caused extensive debate [15,16].

Here we mitigate this problem by verifying that our results are consistent with two estimators,

both discrete and continuous, with different hyperparameter settings, and with different discre-

tization approaches, over a range of bins and widths. Nonetheless, future work should elaborate

on this direction by either using more sophisticated estimators [68], or using networks where

distributions are easier to calculate analytically (e.g., deep linear networks [69,70]).
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Finally, it is worth mentioning that all the networks used here are small (on the order of

tens of neurons) compared to state-of-the-art networks (typically on the order of many thou-

sands, or more). Thus, future work should investigate to what extent the results presented here

generalize to larger networks—as the ones often used nowadays in a range of applications.

That being said, the consistency of our results across training regimes (supervised learning,

and reinforcement learning with and without recurrent networks), across hidden layer sizes,

and across experiment suites (logic gates, Animal-AI, NeuroGym) constitute encouraging pre-

liminary evidence. After the limitations of scaling and approximation above have been over-

come, future work should try to replicate these results with larger networks, more complex

tasks, and different architectures and training hyperparameters.

In this work we used information decomposition to analyze how artificial neural networks

process information in a variety of experimental settings. By studying the learning of logic

gates, we found that performance depends on synergistic neurons in tasks requiring the inte-

gration of information, and that randomly turning off neurons during training with dropout

increases redundancy and robustness while minimizing task-irrelevant features. Using a 3D

environment with simulated physics, we showed that synergy is driven by the integration of

additional sources of information in a complex reinforcement learning setting. Finally, by

studying decision-making tasks inspired by cognitive neuroscience, we found that synergy is

specifically increased by the solving of multiple incongruent tasks and the capacity to integrate

information from several modalities. Based on these findings, we suggest specific functional

roles for PID atoms in the context of learning: redundancy for robustness, unique information

for specialization, and synergy for modality integration, flexibility, and efficient encoding.

These results lay down foundations to study how learning scenarios modulate information

processing modalities, while providing insights into existing cognitive neuroscience results—

where synergy is especially high in the most functionally flexible cortical regions (association

cortices in frontal and parietal regions), and redundancy has been found in the most function-

ally specialized and robust areas of the cortex, including sensory and motor regions.

Materials and methods

Model architectures

For each task and setting, an ensemble of 10 models is trained, with each network initialized

using a different random seed. Additionally, all models use either rectified linear unit (ReLU)

or leaky ReLU (for computing continuous measures) activation functions between each linear

layer to avoid the compression of mutual information associated with double-saturating non-

linearities, as described in [16]. Network architectures varied slightly between experiments,

but in general they consisted of either one or two layers with ten neurons each.

Quantifying information decomposition

We compute information decomposition over the sampled activations of a network during

testing, with its weights frozen (i.e., after first training it on a task). For curriculum tasks, mod-

els are tested on all configurations within the curriculum they are trained on, ensuring a fair

comparison between different training points within a curriculum. The activations sampled

during the testing phase are then used to compute distributions over the activity of the net-

work, used for quantifying redundancy and synergy. Approximating probability distributions

is particularly challenging in neural networks with nonlinearities and we thus use two estima-

tors, different hyperparameter settings, and different discretization strategies to ensure consis-

tency in our results. For our experiments performed in NeuroGym, we use a Gaussian copula

for the information-theoretic estimation, which is a continuous estimator better-suited for the
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large and continuous observation space. We did not use a Gaussian copula for the other exper-

iments (logic gate and Animal-AI experiments; see below) because their discrete observation

space is incompatible with this method. Therefore, for these experiments we use a discrete esti-

mator and discretize activations via binning.

Although the discretization and selection of sources-target pairing differ, the methods for

information decomposition calculations remain the same across all settings. We refer to a

source as being either an individual neuron, a dimension of input, or several dimensions of

input grouped as a single random variable. Thus, a set of sources refers to either a set of neu-

rons in a layer, a set of input dimensions, or a set of several dimensions of input that are con-

sidered as separate sources. In all cases, the target corresponds to the subsequent layer of

neurons considered jointly.

Discretization of activations. Discretization of continuous values, such as the activations

of neural networks, presents a challenge for accurately approximating probability distribu-

tions, as the choices of bin width and range are likely to influence resulting measures. To

address potential issues with binning selection, in addition to the discretization method we

employ specific to each experimental setting (logic gate and Animal-AI, specified in the meth-

ods section of the corresponding setting), we also compute PID measures using 4 other bin-

ning strategies and compare them to summary statistics of our main results (Table A in

S1 Text), finding the results to be qualitatively similar.

In particular, for each layer and each model seed, we select the maximum of values to be

binned across as the 3rd quartile + 1.5×IQR of the set of sampled activations, where IQR is

the interquartile range. The minimum is selected as the maximum between the 1st quartile

—1.5×IQR and 0, since our ReLU activations constrain all samples to be nonnegative. We

then take an even-frequency split of the samples between the resulting range according to

the number of bins (e.g., for 2 bins splitting by the median, for 4 bins splitting by quartiles,

etc.). We employ this method across 3, 4, 5, and 10 bins. In the Animal-AI experiments, we

discretize the continuous parts of the input with the same number of bins used for the layer

discretization based on the IQR, but with evenly spaced bins across the entire observation

space.

Discrete measures. For a given set of sources and target, their corresponding discretized

activations are used to compute a probability distribution by counting the number of occur-

rences of each joint sources-target state and using the plug-in estimator [71]. We use the dit
library [72] to create the distribution and compute the measures of interest.

Although PID proposes the distinction of unique, redundant, and synergistic information,

it does not specify a method for computing these measures. Consequently, a number of differ-

ent formulae have been proposed that capture different aspects of multivariate information,

although there is currently no general agreement on a particular measure. Thus, for complete-

ness, we compute all measures using two different redundancy functions: Imin [6] and IMMI

[31]. To provide some intuition, IMMI computes redundancy as the minimum amount of

information any single source provides about the target and synergy as the minimum amount

of information lost about the target by removing any single source from the entire set of

sources. Imin computes redundancy and synergy similarly, but by instead taking the expected
value with respect to the target of the minimum amount of information provided by any single

source or lost by removing any single source.

We find both measures to be consistent with each other across all experimental settings,

with IMMI yielding slightly higher synergy values. For the purposes of display, we only include

IMMI measures in the body of the text and refer the reader to Figs L-X in S1 Text for all figures

replicated using the Imin redundancy function.
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For a set of sources X = {X1, X2,. . .,XM} and a target Y with N possible values, redundancy

and synergy for IMMI are defined as:

RMMIðX;YÞ ¼ min
i
IðXi;YÞ ð4Þ

SMMIðX;YÞ ¼ IðX;YÞ � max
A�X:jAj¼M� 1

IðA;YÞ ð5Þ

Similarly, redundancy and synergy for Imin are defined as:

RminðX;YÞ ¼
XN

j¼1

pðyjÞmin
i
IðXi;Y ¼ yjÞ ð6Þ

SminðX;YÞ ¼ IðX;YÞ � ImaxðA � X : jAj ¼ M � 1;YÞ ð7Þ

Where Imax is defined as:

ImaxðX;YÞ ¼
XN

j¼1

pðyjÞmax
i

IðXi;Y ¼ yjÞ ð8Þ

Continuous measures. To compute PID in the NeuroGym experiments we use the

Gaussian Copula Mutual Information (GCMI) estimator by [73], which can deal with some of

the nonlinearities introduced by the neurons’ activation function. In the Gaussian case, IMMI

and Imin are known to be very similar (in fact proven to be identical in some cases [31]), so for

simplicity we run all analyses with IMMI. We compute the average 2nd-order synergy over a

random sample of 45 pairs.

Full- vs 2nd-order decomposition. One challenge of PID is that the number of PID atoms

grows super-exponentially with the number of sources [6]. We bypass this here by averaging

across small subsets of sources and using small networks. All calculations are performed over

sets of sources of size K, where K is either the cardinality of the full set of sources M (either the

whole layer or the whole input space; referred to as full-order); or K = 2 (2nd-order) (Fig 1C).

More specifically, for a set of sources X = {X1, X2,. . .,XM} and target Y, the K-order redundancy

R(K) is defined as the average of the redundancy of subsets of sources of cardinality K:

RðKÞðX;YÞ ¼ hRðA;YÞiA; with A � X; jAj ¼ K

In the case of 2nd-order, K = 2 and in full-order, K =M (therefore there is only one set

being considered in the full-order case). In other words, for the case of full-order decomposi-

tion, there is only one set containing all source variables and the decomposition is taken over

the joint mutual information of all source variables. For 2nd-order measures, all calculations

are performed between pairs of sources (i.e., over subsets of the source set—a hidden layer or

input—of cardinality 2). Thus, a 2nd-order value is computed using only 2 elements of a set as

sources, rather than the full set. Performing this operation over all possible combinations of

pairs and computing the mean gives the average 2nd-order measure. When the system grows

too large to efficiently compute all possible combinations, this value can additionally be

approximated by uniformly sampling pairs of combinations.

We show that full-order and 2nd-order measures exhibit similar qualitative behavior in

response to dropout and task (Figs A and B in S1 Text). However, both our results and prior

work [25] suggest that redundancy and synergy are more prevalent at smaller orders, especially

for small networks. By computing average 2nd-order synergy, we can partially capture how
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synergistically-biased [74] a set of sources is—with higher 2nd-order synergy, the PID lattice

will have more synergistically-interacting atoms than redundantly-interacting atoms. Given

these properties, we use 2nd-order measures in the remainder of our experiments.

All of the PID measures shown in the text are 2nd-order and are normalized by mutual

information. Thus, we are specifically showing the proportion of mutual information occupied

by each measure—an increase in (normalized) synergy is in favor of either redundancy or

unique information, which must in turn be reduced.

Layerwise PID analyses

We perform layerwise comparisons of information decomposition in both the logic gate and

Animal-AI experiments (Figs H-K in S1 Text). In logic gate networks, we observe that in both

COPY and XOR tasks, the application of dropout increases redundancy with each subsequent

layer of the network and that synergy is highest from the input to the first layer. In Animal-AI,

we again observe that synergy is highest from the input to the first layer.

We note that these results are preliminary and that the study of network information

decomposition at different layer depths requires further work. It is possible that the effects

observed are influenced by the size and dimensionality of input and action space, and by the

size of each layer (e.g., sampling two sources out of two possible neurons versus ten possible

neurons), which is not controlled for.

Logic gate experiments

The data used for the COPY and XOR logic gate experiments are generated as a two-dimen-

sional binary input with a binary output. The label of each COPY gate input corresponds to

the copying of the first input and the label of the XOR gate input corresponds to the parity of

both inputs.

Our models are small feedforward networks, with two layers consisting of ten neurons

each. Dropout is only applied during initial training and not during testing or lesioning evalu-

ation. Each model is trained to convergence. We subsequently test and compute various infor-

mation decomposition measures.

Each activation sampled during testing is discretized using 3 bins in the range of [0,5]. We

use 3 bins to ensure a sufficient number of samples in each source-target pair. The range of

bins is chosen based on empirical observations of the network activations being heavily con-

centrated within this range.

For the lesioning experiments, we additionally compute the average pairwise synergy for

each neuron. For a particular neuron, this is performed by computing all 2nd-order synergy

values that include the neuron as one of the sources and calculating the mean.

Animal-AI experiments

The experiments conducted in the Animal-AI Environment [37] are performed with proximal

policy optimization (PPO) models [75] using Stable-Baselines3 [76]. The actor-critic networks

of the models consist of two feedforward layers with ten neurons in each layer, identical to

those used in our logic gate experiments.

During training, we evaluate and compute synergy for each model at each task threshold.

For all tasks, the threshold is chosen as the point at which the model successfully reached the

maximum reward or the maximum number of steps per task (2 million steps).

We constrain the observation space to three object-oriented raycasts, each being a one-hot

vector indicating the type of object hit by the raycast and its distance normalized by the size of

the arena, and an additional vector relaying information about the agent’s health, velocity, and
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global position. The raycasts are projected 90 degrees apart—directly in front of the agent, to

its left, and to its right. Thus, the agent has full access to the information required to solve the

task at the first time step of the episode, preventing the addition of bias that could be intro-

duced by input bits being occluded and the need for integration of input information over

time. The raycast observation space occludes the contents of both pits (positive/negative

reward), which would otherwise be visible to an agent receiving the full pixel observation

space. It also allows for the use of small feedforward networks, rather than larger convolutional

layers necessitated by a full pixel input. The small observation space also facilitates our models’

(with small network parameter spaces) ability to solve the given tasks in a complex three-

dimensional environment.

We use the same basic design shown in Fig 3 for all tasks created. In the pit corresponding

to the correct output lies an occluded object with a reward of 4 and in the other pit lies an

occluded ‘death zone’ with a reward of -1, both of which terminate the episode upon being

reached. The agent’s movement is constrained to the platform and one pit and therefore suc-

cessful completion of the task is contingent on using the information relayed by the bit-repre-

senting barriers.

Using this design, we modify the placement of the positive and negative rewards according

to the logic gate task being performed. Agents are placed on a short platform to restrict their

possible state space and simplify the task, serving as a minimal baseline for solving logic gates

in a RL setting. The 3-Bit XOR task explored the effect of integrating an additional source by

placing a third input-source barrier in front of the agent (Fig 3C). Finally, we create three tasks

(Distance XOR-10, 20, and 30) by using the basic task design and elongating the platform to

lengths of 10, 20, and 30 arena units, increasing the distance between the agent and the reward

as a method of adding more difficulty to the logic gate task without the addition of sources

(Fig 3D). Our curriculum tasks consist of the combination of 2-Bit XOR to 3-Bit XOR; and

2-Bit XOR to Distance 10, 20, and 30 XOR.

Synergy is computed in the actor network of the PPO model. Because the observation space

exceeds 20 dimensions, synergy cannot be efficiently computed over the entire input using our

measures. However, due to the modularity of the raycast input, grouping dimensions based on

object-related information is likely to yield more interpretable measurements. Thus, to com-

pute synergy from the input sources to the first linear layer target, we treat each raycast as a

single source with the vector dimension for normalized distance being discretized with 3 bins

from [0,1]. Additionally, the global position is also treated as a single source and discretized

using 5 bins from [0,40] (40 being the length of the arena). We compute the average 2nd-order

synergy between all combinations of source pairs of raycasts (shown in the main text) and

source pairs of each raycast and the global position (Fig G in S1 Text), which yield similar val-

ues. The average 2nd-order synergy is then computed for the rest of the network.

NeuroGym experiments

Our RNN models consist of a single recurrent unit with a hidden layer size of ten neurons

using a leaky ReLU activation. During training, decision-making actions are weighted by a

favor of 20 in the cross-entropy loss compared to the action corresponding to fixation, due to

their relative scarcity in the training process. The observation space is modified to include a

binary indicator signifying the task being performed. We test and compute synergy after train-

ing for 80,000 total steps (40,000 per task in the sequential protocol; 80,000 total in the inter-

leaved protocol). Each task is trained using supervised learning and we modify tasks with

variable episode timing to be of fixed length.
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Unlike our other experiments, the tasks in NeuroGym are stochastic and have a much

larger task-space. To ensure sufficient activation sampling, we test models on a total of 100 tri-

als. We use both the input and hidden layer at each time step as sources and the hidden layer

at the following time step as the target.

Statistical analysis

We perform independent samples t-tests when comparing different models and paired sam-

ples t-test when comparing the same models at different points during training. Additionally,

we perform a Benjamini-Hochberg False Discovery Rate correction to account for multiple

comparisons made in our lesion experiments and when comparing interleaved and sequential

protocols across pairs of tasks in NeuroGym.

Supporting information

S1 Text. Fig A in S1 Text. Full-order and 2nd-order measures exhibit similar behavior for

the COPY task. Values represent individual data points, and means ± SEM. Fig B in S1 Text.

Full-order and 2nd-order measures exhibit similar behavior for the XOR task. Values repre-

sent individual data points, and means ± SEM. Fig C in S1 Text. Networks with different

layer sizes (ten versus twenty neurons) exhibit similar behavior for the COPY task (2nd-

order). Values represent individual data points, and means ± SEM. Fig D in S1 Text. Net-

works with different layer sizes (ten versus twenty neurons) exhibit similar behavior for

the XOR task (2nd-order). Values represent individual data points, and means ± SEM. Fig E

in S1 Text. Effects of lesions and dropout on network information profiles replicate in

larger networks (twenty neurons rather than ten). (a) (****P<0.0001, independent samples t
test; n = 20). Values represent probability density functions. (b) (*P<0.05, **P<0.01,

***P<0.001, ****P<0.0001, paired samples t test with Benjamini-Hochberg False Discovery

rate correction; n = 20). Values represent means ± SEM. Fig F in S1 Text. Dropout removes

irrelevant redundant and synergistic information about the input in the COPY task, but

not the XOR task (*P<0.05, **P<0.01, independent samples t test; n = 20). Values represent

probability density functions. Fig G in S1 Text. Relation of compositional tasks and synergy

in Animal-AI using pairwise raycast-position sources. (a) (**P<0.01, paired samples t test;

n = 20). Values represent probability density functions. (b) (n.s., not significant, paired samples

t test; n = 20). Values represent probability density functions. (c) Values represent probability

density functions. Fig H in S1 Text. Layer-wise comparison for COPY task with different

levels of dropout applied (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, independent sam-

ples t test; n = 20). Values represent probability density functions. Fig I in S1 Text. Layer-

wise comparison for XOR task with different levels of dropout applied (*P<0.05,
**P<0.01, ****P<0.0001, independent samples t test; n = 20). Values represent probability

density functions. Fig J in S1 Text. Layer-wise comparison at the end of training for Ani-

mal-AI tasks using pairwise raycast sources (**P<0.01, ****P<0.0001, independent samples

t test; n = 20). Values represent probability density functions. Fig K in S1 Text. Layer-wise

comparison at the end of training for Animal-AI tasks using pairwise raycast-position

sources (**P<0.01, ****P<0.0001, independent samples t test; n = 20). Values represent

probability density functions. Fig L in S1 Text. Full-order and 2nd-order measures exhibit

similar behavior for the COPY task replicated using Imin redundancy function. Values rep-

resent individual data points, and means ± SEM. Fig M in S1 Text. Full-order and 2nd-order

measures exhibit similar behavior for the XOR task replicated using Imin redundancy func-

tion. Values represent individual data points, and means ± SEM. Fig N in S1 Text. Networks

with different layer sizes (ten versus twenty neurons) exhibit similar behavior for the
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COPY task (2nd-order) replicated using Imin redundancy function. Values represent individ-

ual data points, and means ± SEM. Fig O in S1 Text. Networks with different layer sizes (ten

versus twenty neurons) exhibit similar behavior for the XOR task (2nd-order) replicated

using Imin redundancy function. Values represent individual data points, and means ± SEM.

Fig P in S1 Text. Dropout removes irrelevant redundant and synergistic information

about the input in the COPY task, but not the XOR task (*P<0.05, **P<0.01, independent

samples t test; n = 20) replicated using Imin redundancy function. Values represent probabil-

ity density functions. Fig Q in S1 Text. Effects of lesions and dropout on network informa-

tion profiles replicated using Imin redundancy function. (a) (*P<0.05, ***P<0.001,

****P<0.0001, independent samples t test; n = 20). Values represent probability density func-

tions. (b) (*P<0.05, **P<0.01, paired samples t test with Benjamini-Hochberg False Discovery

rate correction; n = 20). Values represent means ± SEM. Fig R in S1 Text. Effects of lesions

and dropout on network information profiles replicate in larger networks (twenty neurons

rather than ten) replicated using Imin redundancy function. (a) (****P<0.0001, independent

samples t test; n = 20). Values represent probability density functions. (b) (*P<0.05, **P<0.01,

***P<0.001, ****P<0.0001, paired samples t test with Benjamini-Hochberg False Discovery

rate correction; n = 20). Values represent means ± SEM. Fig S in S1 Text. Relation of compo-

sitional tasks and synergy in Animal-AI using pairwise raycast-position sources replicated

using Imin redundancy function. (a) (**P<0.01, paired samples t test; n = 20). Values repre-

sent probability density functions. (b) (n.s., not significant, paired samples t test; n = 20). Val-

ues represent probability density functions. (c) Distance XOR refers to Distance 10 XOR.

Values represent probability density functions. Fig T in S1 Text. Relation of compositional

tasks and synergy in Animal-AI using pairwise raycast-position sources replicated using

Imin redundancy function. (a) (**P<0.01, paired samples t test; n = 20). Values represent

probability density functions. (b) (n.s., not significant, paired samples t test; n = 20). Values

represent probability density functions. (c) Distance XOR refers to Distance 10 XOR. Values

represent probability density functions. Fig U in S1 Text. Layer-wise comparison for COPY

task with different levels of dropout applied replicated using Imin redundancy function

(**P<0.01, ***P<0.001, ****P<0.0001, independent samples t test; n = 20). Values represent

probability density functions. Fig V in S1 Text. Layer-wise comparison for XOR task with

different levels of dropout applied replicated using Imin redundancy function

(****P<0.0001, independent samples t test; n = 20). Values represent probability density

functions. Fig W in S1 Text. Layer-wise comparison at the end of training for Animal-AI

tasks using pairwise raycast sources replicated using Imin redundancy function (*P<0.05,
****P<0.0001, independent samples t test; n = 20). Values represent probability density func-

tions. Fig X in S1 Text. Layer-wise comparison at the end of training for Animal-AI tasks

using pairwise raycast-position sources replicated using Imin redundancy function

(*P<0.05, ***P<0.001, ****P<0.0001, independent samples t test; n = 20). Values represent

probability density functions. Table A in S1 Text. Summary statistics for logic gate and Ani-

mal AI experiments across different binning strategies for discretization (*P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001, n.s., not significant). P-values are not corrected for

multiple comparisons.
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