692 research outputs found

    Interlaced Dynamical Decoupling and Coherent Operation of a Singlet-Triplet Qubit

    Full text link
    We experimentally demonstrate coherence recovery of singlet-triplet superpositions by interlacing qubit rotations between Carr-Purcell (CP) echo sequences. We then compare performance of Hahn, CP, concatenated dynamical decoupling (CDD) and Uhrig dynamical decoupling (UDD) for singlet recovery. In the present case, where gate noise and drift combined with spatially varying hyperfine coupling contribute significantly to dephasing, and pulses have limited bandwidth, CP and CDD yield comparable results, with T2 ~ 80 microseconds.Comment: related papers at http://marcuslab.harvard.ed

    The Resonant Exchange Qubit

    Full text link
    We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two-axis control at a detuning sweet-spot, where leakage due to hyperfine coupling is suppressed by the large exchange gap. A {\pi}/2-gate time of 2.5 ns and a coherence time of 19 {\mu}s, using multi-pulse echo, are also demonstrated. Model calculations that include effects of hyperfine noise are in excellent quantitative agreement with experiment

    Heterogeneity in susceptibility dictates the order of epidemiological models

    Full text link
    The fundamental models of epidemiology describe the progression of an infectious disease through a population using compartmentalized differential equations, but do not incorporate population-level heterogeneity in infection susceptibility. We show that variation strongly influences the rate of infection, while the infection process simultaneously sculpts the susceptibility distribution. These joint dynamics influence the force of infection and are, in turn, influenced by the shape of the initial variability. Intriguingly, we find that certain susceptibility distributions (the exponential and the gamma) are unchanged through the course of the outbreak, and lead naturally to power-law behavior in the force of infection; other distributions often tend towards these "eigen-distributions" through the process of contagion. The power-law behavior fundamentally alters predictions of the long-term infection rate, and suggests that first-order epidemic models that are parameterized in the exponential-like phase may systematically and significantly over-estimate the final severity of the outbreak

    Fast sensing of double-dot charge arrangement and spin state with an rf sensor quantum dot

    Full text link
    Single-shot measurement of the charge arrangement and spin state of a double quantum dot are reported, with measurement times down to ~ 100 ns. Sensing uses radio-frequency reflectometry of a proximal quantum dot in the Coulomb blockade regime. The sensor quantum dot is up to 30 times more sensitive than a comparable quantum point contact sensor, and yields three times greater signal to noise in rf single-shot measurements. Numerical modeling is qualitatively consistent with experiment and shows that the improved sensitivity of the sensor quantum dot results from reduced screening and lifetime broadening.Comment: related papers at http://marcuslab.harvard.ed

    Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit

    Full text link
    We report initialization, complete electrical control, and single-shot readout of an exchange-only spin qubit. Full control via the exchange interaction is fast, yielding a demonstrated 75 qubit rotations in under 2 ns. Measurement and state tomography are performed using a maximum-likelihood estimator method, allowing decoherence, leakage out of the qubit state space, and measurement fidelity to be quantified. The methods developed here are generally applicable to systems with state leakage, noisy measurements, and non-orthogonal control axes.Comment: contains Supplementary Informatio

    Conditional operation of a spin qubit

    Full text link
    We report coherent operation of a singlet-triplet qubit controlled by the arrangement of two electrons in an adjacent double quantum dot. The system we investigate consists of two pairs of capacitively coupled double quantum dots fabricated by electrostatic gates on the surface of a GaAs heterostructure. We extract the strength of the capacitive coupling between qubit and double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways to multi-qubit control and implementation of quantum algorithms with spin qubits.Comment: related papers here: http://marcuslab.harvard.ed

    Ab-initio investigation of finite size effects in rutile titania nanoparticles with semilocal and nonlocal density functionals

    Full text link
    In this work, we employ hybrid and generalized gradient approximation (GGA) level density functional theory (DFT) calculations to investigate the convergence of surface properties and band structure of rutile titania (TiO2_2) nanoparticles with particle size. The surface energies and band structures are calculated for cuboidal particles with minimum dimension ranging from 3.7 \r{A} (24 atoms) to 10.3 \r{A} (384 atoms) using a highly-parallel real-space DFT code to enable hybrid level DFT calculations of larger nanoparticles than are typically practical. We deconvolute the geometric and electronic finite size effects in surface energy, and evaluate the influence of defects on band structure and density of states (DOS). The electronic finite size effects in surface energy vanish when the minimum length scale of the nanoparticles becomes greater than 10 \r{A}. We show that this length scale is consistent with a computationally efficient numerical analysis of the characteristic length scale of electronic interactions. The surface energy of nanoparticles having minimum dimension beyond this characteristic length can be approximated using slab calculations that account for the geometric defects. In contrast, the finite size effects on the band structure is highly dependent on the shape and size of these particles. The DOS for cuboidal particles and more realistic particles constructed using the Wulff algorithm reveal that defect states within the bandgap play a key role in determining the band structure of nanoparticles and the bandgap does not converge to the bulk limit for the particle sizes investigated
    corecore