25 research outputs found

    Polyethylene Oxidation in Total Hip Arthroplasty: Evolution and New Advances

    Get PDF
    Ultra-high molecular weight polyethylene (UHMWPE) remains the gold standard acetabular bearing material for hip arthroplasty. Its successful performance has shown consistent results and survivorship in total hip replacement (THR) above 85% after 15 years, with different patients, surgeons, or designs

    Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry

    Get PDF

    Multimodal laser ablation/desorption imaging analysis of Zn and MMP-11 in breast tissues

    Full text link
    © 2017, Springer-Verlag GmbH Germany. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. The main functions of these metalloproteinases are the degradation of the stromal connective tissue and basement membrane components. Recent data from model systems suggest that MMPs are involved in breast cancer (BC) initiation, invasion, and metastasis. Particularly, MMP-11 (stromelysin-3) is expressed in stromal fibroblasts adjacent to epithelial tumor cells, and high levels of this metalloproteinase were associated with tumor progression and poor prognosis of BC. Consequently, MMP-11 involved in these processes can be a candidate as a new potential prognostic biomarker in BC. Bioimaging techniques based on laser ablation/desorption and mass spectrometry are rapidly growing in biology and medicine for studies of biological systems to provide information of biomolecules (such as proteins, metabolites, and lipids) and metals with lateral resolution at the micrometer scale. In this study, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used for the first time to investigate the distribution of MMP-11 in human breast cancer tissues in order to show a possible correlation between cancerous and healthy samples, by differential proteomics and using such differences for possible cancer diagnosis and/or prognosis. Additionally, those human breast tissue samples were analyzed in parallel by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in order to gather additional information about the elemental distribution of Zn and its possible associations with MMPs

    Quantitative bioimaging of Ca, Fe, Cu and Zn in breast cancer tissues by LA-ICP-MS

    Full text link
    © The Royal Society of Chemistry 2017. In recent years, several studies have shown that concentrations of essential trace elements naturally present in breast tissues (e.g. Ca, Fe, Cu and Zn) may be significantly increased in breast cancer tissues. This is not surprising because essential elements are responsible for a great number of metabolic and biological processes. The essential trace elements may play some major functions in life: stabilizers, elements of structure, elements for hormonal function and cofactors in enzymes. In any case, the role of trace elements in breast cancer is complex, because it affects many types of molecules, cells and tissues. The combination of analytical and immunehistochemical assays is crucial for better understanding of the role of essential trace elements in promoting tumor growth and migration. Bioimaging analytical techniques with adequate spatial resolution are today of crucial interest to investigate the spatial distribution of trace elements and correlate them with histological aspects in breast tissues. In this vein, in this particular study the application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used for the first time to investigate the actual distribution of the essential trace bioelements (Ca, Fe, Cu and Zn) in breast cancer tissues, and its possible application for tumor diagnostic and prognostic purposes. As has been demonstrated in this study, the levels of Ca, Fe, Cu and Zn in the tumor area are significantly higher than the levels found in the non-tumor one, as well as, a heterogeneous distribution of the investigated metals

    MMP-11 as a biomarker for metastatic breast cancer by immunohistochemical-assisted imaging mass spectrometry

    Full text link
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. MMP-11 is a member of the matrix metalloproteinase family (MMPs) which are overexpressed in cancer cells, stromal cells and the adjacent microenvironment. The MMP protein family encompasses zinc-dependent endopeptidases that degrade the extracellular matrix (ECM), facilitating the breakdown of the basal membrane and matrix connective tissues. This function is believed to be important in cancer development and metastasis. This paper investigated a gold nanoparticle-based immunohistochemical assay to visualise the distribution of MMP-11 in human breast cancer tissues from eight patients with and without metastases by employing laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The expression of MMP-11 was increased and more heterogeneous in metastatic specimens compared to non-metastatic tumour samples. These findings demonstrate that imaging breast tumours by LA-ICP-MS may be a useful tool to aid the prognosis and treatment of breast cancer. As an example, samples of two patients are presented who were diagnosed with matching characteristics and grades of breast cancer. Although both patients had a similar prognosis and treatment, only one developed metastases
    corecore