127 research outputs found

    Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    Get PDF
    Background: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration >= 5 years, cases of DN were defined as albuminuria >300 mg/d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). Methodology/Principal Findings: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously developed model for DN. Upon unblinding, the model for DN showed 93.8% sensitivity and 91.4% specificity, with an AUC of 0.948 (95% CI 0.898-0.978). Of 65 previously identified peptides, 60 were significantly different between cases and controls of this study. In <10% of cases and controls classification by proteome analysis not entirely resulted in the expected clinical outcome. Analysis of patient's subsequent clinical course revealed later progression to DN in some of the false positive classified DN control patients. Conclusions: These data provide the first independent confirmation that profiling of the urinary proteome by CE-MS can adequately identify subjects with DN, supporting the generalizability of this approach. The data further establish urinary collagen fragments as biomarkers for diabetes-induced renal damage that may serve as earlier and more specific biomarkers than the currently used urinary albumin

    Urinary Collagen Fragments Are Significantly Altered in Diabetes: A Link to Pathophysiology

    Get PDF
    Background: The pathogenesis of diabetes mellitus (DM) is variable, comprising different inflammatory and immune responses. Proteome analysis holds the promise of delivering insight into the pathophysiological changes associated with diabetes. Recently, we identified and validated urinary proteomics biomarkers for diabetes. Based on these initial findings, we aimed to further validate urinary proteomics biomarkers specific for diabetes in general, and particularity associated with either type 1 (T1D) or type 2 diabetes (T2D). Methodology/Principal Findings: Therefore, the low-molecular-weight urinary proteome of 902 subjects from 10 different centers, 315 controls and 587 patients with T1D (n = 299) or T2D (n = 288), was analyzed using capillary-electrophoresis mass-spectrometry. The 261 urinary biomarkers (100 were sequenced) previously discovered in 205 subjects were validated in an additional 697 subjects to distinguish DM subjects (n = 382) from control subjects (n = 315) with 94% (95% CI: 92-95) accuracy in this study. To identify biomarkers that differentiate T1D from T2D, a subset of normoalbuminuric patients with T1D (n = 68) and T2D (n = 42) was employed, enabling identification of 131 biomarker candidates (40 were sequenced) differentially regulated between T1D and T2D. These biomarkers distinguished T1D from T2D in an independent validation set of normoalbuminuric patients (n = 108) with 88% (95% CI: 81-94%) accuracy, and in patients with impaired renal function (n = 369) with 85% (95% CI: 81-88%) accuracy. Specific collagen fragments were associated with diabetes and type of diabetes indicating changes in collagen turnover and extracellular matrix as one hallmark of the molecular pathophysiology of diabetes. Additional biomarkers including inflammatory processes and pro-thrombotic alterations were observed. Conclusions/Significance: These findings, based on the largest proteomic study performed to date on subjects with DM, validate the previously described biomarkers for DM, and pinpoint differences in the urinary proteome of T1D and T2D, indicating significant differences in extracellular matrix remodeling

    XML-based genetic rules for scene boundary detection in a parallel processing environment

    Get PDF
    Genetic programming is based on Darwinian evolutionary theory that suggests that the best solution for a problem can be evolved by methods of natural selection of the fittest organisms in a population. These principles are translated into genetic programming by populating the solution space with an initial number of computer programs that can possibly solve the problem and then evolving the programs by means of mutation, reproduction and crossover until a candidate solution can be found that is close to or is the optimal solution for the problem. The computer programs are not fully formed source code but rather a derivative that is represented as a parse tree. The initial solutions are randomly generated and set to a certain population size that the system can compute efficiently. Research has shown that better solutions can be obtained if 1) the population size is increased and 2) if multiple runs are performed of each experiment. If multiple runs are initiated on many machines the probability of finding an optimal solution are increased exponentially and computed more efficiently. With the proliferation of the web and high speed bandwidth connections genetic programming can take advantage of grid computing to both increase population size and increasing the number of runs by utilising machines connected to the web. Using XML-Schema as a global referencing mechanism for defining the parameters and syntax of the evolvable computer programs all machines can synchronise ad-hoc to the ever changing environment of the solution space. Another advantage of using XML is that rules are constructed that can be transformed by XSLT or DOM tree viewers so they can be understood by the GP programmer. This allows the programmer to experiment by manipulating rules to increase the fitness of a rule and evaluate the selection of parameters used to define a solution

    Mapping the binding interface between human eukaryotic initiation factors 1A and 5B: A new interaction between old partners

    No full text
    The translation initiation factors (IFs) IF1/eIF1A and IF2/eIF5B have been conserved throughout all kingdoms. Although the central roles of the bacterial factors IF1 and IF2 were established long ago, the importance of their eukaryotic homologs, eukaryotic IFs (eIFs) eIF1A and eIF5B, has only recently become evident. The translation machinery in eukaryotes is more complex and accordingly, eIF1A and eIF5B seem to have acquired a number of new functions while also retaining many of the roles of bacterial IF1 and IF2. IF1 and IF2 have been shown to interact on the ribosome but no binding has been detected for the free factors. In contrast, yeast eIF1A and eIF5B have been reported to interact in the absence of ribosomes. Here, we have identified the binding interface between human eIF1A and the C-terminal domain of eIF5B by using solution NMR. That interaction interface involves the C termini of the two proteins, which are not present in bacterial IF1 and IF2. The interaction is, therefore, unique to eukaryotes. A structural model for the interaction of eIF1A and eIF5B in the context of the ribosome is presented. We propose that eIF1A and eIF5B simultaneously interact at two sites that are >50 Å apart: through their C termini as reported here, and through an interface previously identified in bacterial IF1 and IF2. The binding between the C termini of eIF1A and eIF5B has implications for eukaryote-specific mechanisms of recruitment and release of translation IFs from the ribosome
    corecore