6,949 research outputs found

    Sensitive Dependence on Parameters of Continuous-time Nonlinear Dynamical Systems

    Get PDF
    We would like to thank the partial support of this work by the Brazilian agencies FAPESP (processes: 2011/19296-1 and 2013/26598-0, CNPq and CAPES. MSB acknowledges EPSRC Ref. EP/I032606/1.Peer reviewedPostprin

    Causal Structure and Birefringence in Nonlinear Electrodynamics

    Full text link
    We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.Comment: 11 pages, no figure

    Measuring stellar differential rotation with high-precision space-borne photometry

    Full text link
    We introduce a method of measuring a lower limit to the amplitude of surface differential rotation from high-precision, evenly sampled photometric time series. It is applied to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series was used to select stars that allow an accurate determination of starspot rotation periods. A simple two-spot model was applied together with a Bayesian information criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty were obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain approach. We applied our method to the Sun and eight other stars for which previous spot modelling had been performed to compare our results with previous ones. We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite for successfully measuring differential rotation through spot modelling. For a proper Monte Carlo Markov Chain analysis, it is necessary to take the strong correlations among different parameters that exist in spot modelling into account. For the planet-hosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation of \Delta P / P = 0.0523 \pm 0.0016. We confirm that the Sun as a star in the optical passband is not suitable for measuring differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison to more sophisticated and time-consuming approaches.Comment: Accepted to Astronomy and Astrophysics, 15 pages, 13 figures, 4 tables and an Appendi

    Controlled flavor violation in the MSSM from a unified Δ(27)\Delta(27) flavor symmetry

    Full text link
    We study the phenomenology of a unified supersymmetric theory with a flavor symmetry Δ(27)\Delta(27). The model accommodates quark and lepton masses, mixing angles and CP phases. In this model, the Dirac and Majorana mass matrices have a unified texture zero structure in the (1,1)(1,1) entry that leads to the Gatto-Sartori-Tonin relation between the Cabibbo angle and ratios of the masses in the quark sectors, and to a natural departure from zero of the θ13\theta_{13}^\ell angle in the lepton sector. We derive the flavor structures of the trilinears and soft mass matrices, and show their general non-universality. This causes large flavor violating effects. As a consequence, the parameter space for this model is constrained, allowing it to be (dis)proven by flavor violation searches in the next decade. Although the results are model specific, we compare them to previous studies to show similar flavour effects (and associated constraints) are expected in general in supersymmetric flavor models, and may be used to distinguish them.Comment: 21 pages, 6 figure

    Four-dimensional topological Einstein-Maxwell gravity

    Get PDF
    The complete on-shell action of topological Einstein-Maxwell gravity in four-dimensions is presented. It is shown explicitly how this theory for SU(2) holonomy manifolds arises from four-dimensional Euclidean N=2 supergravity. The twisted local BRST symmetries and twisted local Lorentz symmetries are given and the action and stress tensor are shown to be BRST-exact. A set of BRST-invariant topological operators is given. The vector and antisymmetric tensor twisted supersymmetries and their algebra are also found.Comment: Published version. Expanded discussion of new results in the introduction and some clarifying remarks added in later sections. 22 pages, uses phyzz

    Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time

    Get PDF
    Starting from a recently proposed Abelian topological model in (2+1) dimensions, which involve the Kalb-Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for generalization is detected. However we show that the goal is achieved if we introduce a vectorial auxiliary field. Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechanism in D=3, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts for ghosts. Therefore in order to quantize the theory we construct a complete set of BRST and anti-BRST equations using the horizontality condition.Comment: 8 pages. To appear in Physical Review

    Leptogenesis in Δ(27)\Delta(27) with a Universal Texture Zero

    Full text link
    We investigate the possibility of viable leptogenesis in an appealing Δ(27)\Delta(27) model with a universal texture zero in the (1,1) entry. The model accommodates the mass spectrum, mixing and CP phases for both quarks and leptons and allows for grand unification. Flavoured Boltzmann equations for the lepton asymmetries are solved numerically, taking into account both N1N_1 and N2N_2 right-handed neutrino decays. The N1N_1-dominated scenario is successful and the most natural option for the model, with M1[109,1012]M_1 \in [10^9, 10^{12}] GeV, and M1/M2[0.002,0.1]M_1/M_2 \in [0.002, 0.1], which constrains the parameter space of the underlying model and yields lower bounds on the respective Yukawa couplings. Viable leptogenesis is also possible in the N2N_2-dominated scenario, with the asymmetry in the electron flavour protected from N1N_1 washout by the texture zero. However, this occurs in a region of parameter space which has a stronger mass hierarchy M1/M2<0.002M_1/M_2 < 0.002 , and M2M_2 relatively close to M3M_3, which is not a natural expectation of the Δ(27)\Delta(27) model.Comment: v2: 20 pages, 2 figures. Version accepted in JHE
    corecore