117 research outputs found

    Recent advances and perspectives on starch nanocomposites for packaging applications

    Get PDF
    Starch nanocomposites are popular and abundant materials in packaging sectors. The aim of this work is to review some of the most popular starch nanocomposite systems that have been used nowadays. Due to a wide range of applicable reinforcements, nanocomposite systems are investigated based on nanofiller type such as nanoclays, polysaccharides and carbonaceous nanofillers. Furthermore, the structures of starch and material preparation methods for their nanocomposites are also mentioned in this review. It is clearly presented that mechanical, thermal and barrier properties of plasticised starch can be improved with well-dispersed nanofillers in starch nanocomposites

    Association between Grape Yeast Communities and the Vineyard Ecosystems

    Get PDF
    The grape yeast biota from several wine-producing areas, with distinct soil types and grapevine training systems, was assessed on five islands of Azores Archipelago, and differences in yeast communities composition associated with the geographic origin of the grapes were explored. Fifty-seven grape samples belonging to the Vitis vinifera grapevine cultivars Verdelho dos Acores (Verdelho), Arinto da Terceira (Arinto) and Terrantez do Pico (Terrantez) were collected in two consecutive years and 40 spontaneous fermentations were achieved. A total of 1710 yeast isolates were obtained from freshly crushed grapes and 1200 from final stage of fermentations. Twenty-eight species were identified, Hanseniaspura uvarum, Pichia terricola and Metschnikowia pulcherrima being the three most representative species isolated. Candida carpophila was encountered for the first time as an inhabitant of grape or wine-associated environments. In both sampling years, a higher proportion of H. uvarum in fresh grapes from Verdelho cultivar was observed, in comparison with Arinto cultivar. Qualitatively significant differences were found among yeast communities from several locations on five islands of the Archipelago, particularly in locations with distinctive agro-ecological compositions. Our results are in agreement with the statement that grape-associated microbial biogeography is non-randomly associated with interactions of climate, soil, cultivar, and vine training systems in vineyard ecosystems. Our observations strongly support a possible linkage between grape yeast and wine typicality, reinforcing the statement that different viti-cultural terroirs harbor distinctive yeast biota, in particular in vineyards with very distinctive environmental conditions.Joao Drumonde Neves is the recipient of a fellowship of the Azorean Government (M321/006/F/2008) and PROEMPREGO. This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by national funds through the FCT I.P. and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI), and by national funds through FCT by the projects FCOMP-01-0124-008775, PTDC/AGR-ALI/103392/2008 and PTDC/AGR-ALI/121062/2010.info:eu-repo/semantics/publishedVersio

    Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant defensins are an important component of the innate defence system of plants where they form protective antimicrobial barriers between tissue types of plant organs as well as around seeds. These peptides also have other activities that are important for agricultural applications as well as the medical sector. Amongst the numerous plant peptides isolated from a variety of plant species, a significant number of promising defensins have been isolated from Brassicaceae species. Here we report on the isolation and characterization of four defensins from <it>Heliophila coronopifolia</it>, a native South African Brassicaceae species.</p> <p>Results</p> <p>Four defensin genes (<it>Hc-AFP1</it>-<it>4) </it>were isolated with a homology based PCR strategy. Analysis of the deduced amino acid sequences showed that the peptides were 72% similar and grouped closest to defensins isolated from other Brassicaceae species. The Hc-AFP1 and 3 peptides shared high homology (94%) and formed a unique grouping in the Brassicaceae defensins, whereas Hc-AFP2 and 4 formed a second homology grouping with defensins from <it>Arabidopsis </it>and <it>Raphanus</it>. Homology modelling showed that the few amino acids that differed between the four peptides had an effect on the surface properties of the defensins, specifically in the alpha-helix and the loop connecting the second and third beta-strands. These areas are implicated in determining differential activities of defensins. Comparing the activities after recombinant production of the peptides, Hc-AFP2 and 4 had IC<sub>50 </sub>values of 5-20 μg ml<sup>-1 </sup>against two test pathogens, whereas Hc-AFP1 and 3 were less active. The activity against <it>Botrytis cinerea </it>was associated with membrane permeabilization, hyper-branching, biomass reduction and even lytic activity. In contrast, only Hc-AFP2 and 4 caused membrane permeabilization and severe hyper-branching against the wilting pathogen <it>Fusarium solani</it>, while Hc-AFP1 and 3 had a mild morphogenetic effect on the fungus, without any indication of membrane activity. The peptides have a tissue-specific expression pattern since differential gene expression was observed in the native host. <it>Hc-AFP1 </it>and <it>3 </it>expressed in mature leaves, stems and flowers, whereas <it>Hc-AFP2 </it>and <it>4 </it>exclusively expressed in seedpods and seeds.</p> <p>Conclusions</p> <p>Two novel Brassicaceae defensin sequences were isolated amongst a group of four defensin encoding genes from the indigenous South African plant <it>H. coronopifolia</it>. All four peptides were active against two test pathogens, but displayed differential activities and modes of action. The expression patterns of the peptide encoding genes suggest a role in protecting either vegetative or reproductive structures in the native host against pathogen attack, or roles in unknown developmental and physiological processes in these tissues, as was shown with other defensins.</p
    corecore