142 research outputs found

    Reviewing the History of HIV-1: Spread of Subtype B in the Americas

    Get PDF
    The dispersal of HIV-1 subtype B (HIV-1B) is a reflection of the movement of human populations in response to social, political, and geographical issues. The initial dissemination of HIV-1B outside Africa seems to have included the passive involvement of human populations from the Caribbean in spreading the virus to the United States. However, the exact pathways taken during the establishment of the pandemic in the Americas remain unclear. Here, we propose a geographical scenario for the dissemination of HIV-1B in the Americas, based on phylogenetic and genetic statistical analyses of 313 available sequences of the pol gene from 27 countries. Maximum likelihood and Bayesian inference methods were used to explore the phylogenetic relationships between HIV-1B sequences, and molecular variance estimates were analyzed to infer the genetic structure of the viral population. We found that the initial dissemination and subsequent spread of subtype B in the Americas occurred via a single introduction event in the Caribbean around 1964 (1950–1967). Phylogenetic trees present evidence of several primary outbreaks in countries in South America, directly seeded by the Caribbean epidemic. Cuba is an exception insofar as its epidemic seems to have been introduced from South America. One clade comprising isolates from different countries emerged in the most-derived branches, reflecting the intense circulation of the virus throughout the American continents. Statistical analysis supports the genetic compartmentalization of the virus among the Americas, with a close relationship between the South American and Caribbean epidemics. These findings reflect the complex establishment of the HIV-1B pandemic and contribute to our understanding between the migration process of human populations and virus diffusion

    Epidermolysa bullosa in Danish Hereford calves is caused by a deletion in LAMC2 gene

    Get PDF
    BACKGROUND Heritable forms of epidermolysis bullosa (EB) constitute a heterogeneous group of skin disorders of genetic aetiology that are characterised by skin and mucous membrane blistering and ulceration in response to even minor trauma. Here we report the occurrence of EB in three Danish Hereford cattle from one herd. RESULTS Two of the animals were necropsied and showed oral mucosal blistering, skin ulcerations and partly loss of horn on the claws. Lesions were histologically characterized by subepidermal blisters and ulcers. Analysis of the family tree indicated that inbreeding and the transmission of a single recessive mutation from a common ancestor could be causative. We performed whole genome sequencing of one affected calf and searched all coding DNA variants. Thereby, we detected a homozygous 2.4 kb deletion encompassing the first exon of the LAMC2 gene, encoding for laminin gamma 2 protein. This loss of function mutation completely removes the start codon of this gene and is therefore predicted to be completely disruptive. The deletion co-segregates with the EB phenotype in the family and absent in normal cattle of various breeds. Verifying the homozygous private variants present in candidate genes allowed us to quickly identify the causative mutation and contribute to the final diagnosis of junctional EB in Hereford cattle. CONCLUSIONS Our investigation confirms the known role of laminin gamma 2 in EB aetiology and shows the importance of whole genome sequencing in the analysis of rare diseases in livestock
    corecore