9,553 research outputs found

    Mass generation for non-Abelian antisymmetric tensor fields in a three-dimensional space-time

    Get PDF
    Starting from a recently proposed Abelian topological model in (2+1) dimensions, which involve the Kalb-Ramond two form field, we study a non-Abelian generalization of the model. An obstruction for generalization is detected. However we show that the goal is achieved if we introduce a vectorial auxiliary field. Consequently, a model is proposed, exhibiting a non-Abelian topological mass generation mechanism in D=3, that provides mass for the Kalb-Ramond field. The covariant quantization of this model requires ghosts for ghosts. Therefore in order to quantize the theory we construct a complete set of BRST and anti-BRST equations using the horizontality condition.Comment: 8 pages. To appear in Physical Review

    Causal Structure and Birefringence in Nonlinear Electrodynamics

    Full text link
    We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.Comment: 11 pages, no figure

    Estimating Prices for R&D Investment in the 2007 R&D Satellite Account

    Get PDF
    This paper is part of a series that provides the details behind the Bureau of Economic Analysis's (BEA) satellite account on research and development (R&D) activity. In the current work, the focus is on the theoretical underpinnings and empirical implementation of the R&D price index used to construct real R&D output. We examine four alternative price indexes. For each, we lay out the theoretical assumptions needed for the approach to be valid and examine how well the approach works in practice. We then compare these four alternative price indexes and explain the choice of our preferred price index.

    Measuring stellar differential rotation with high-precision space-borne photometry

    Full text link
    We introduce a method of measuring a lower limit to the amplitude of surface differential rotation from high-precision, evenly sampled photometric time series. It is applied to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series was used to select stars that allow an accurate determination of starspot rotation periods. A simple two-spot model was applied together with a Bayesian information criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty were obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain approach. We applied our method to the Sun and eight other stars for which previous spot modelling had been performed to compare our results with previous ones. We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite for successfully measuring differential rotation through spot modelling. For a proper Monte Carlo Markov Chain analysis, it is necessary to take the strong correlations among different parameters that exist in spot modelling into account. For the planet-hosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation of \Delta P / P = 0.0523 \pm 0.0016. We confirm that the Sun as a star in the optical passband is not suitable for measuring differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison to more sophisticated and time-consuming approaches.Comment: Accepted to Astronomy and Astrophysics, 15 pages, 13 figures, 4 tables and an Appendi

    Controle biológico da traça-do-tomateiro em sistema orgânico de produção.

    Get PDF
    bitstream/item/103050/1/bpd-52.pd

    Non-Chern-Simons Topological Mass Generation in (2+1) Dimensions

    Get PDF
    By dimensional reduction of a massive BF theory, a new topological field theory is constructed in (2+1) dimensions. Two different topological terms, one involving a scalar and a Kalb-Ramond fields and another one equivalent to the four-dimensional BF term, are present. We constructed two actions with these topological terms and show that a topological mass generation mechanism can be implemented. Using the non-Chern-Simons topological term, an action is proposed leading to a classical duality relation between Klein-Gordon and Maxwell actions. We also have shown that an action in (2+1) dimensions with the Kalb-Ramond field is related by Buscher's duality transformation to a massive gauge-invariant Stuckelberg-type theory.Comment: 8 pages, no figures, RevTE
    corecore