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ABSTRACT. Geochemistry and mineralogy of rocks play important roles in 
the occurrence of individual lichen species and assembly of lichen communities. 
Whereas lichens of metal-enriched settings have been a focus of study for many 
decades, only a few such lichen inventories exist for North America. We 
reexamined the lichen biota of Pine Hill, a serpentine outcrop on Little Deer 
Isle, Maine and Callahan Mine, a copper- and zinc-enriched Superfund site in 
Brooksville, Maine by conducting additional field surveys and reexamining 
unidentified taxa from previous collections. To better characterize the 
substrates upon which the lichens were found, we conducted elemental analyses 
via x-ray fluorescence and inductively coupled plasma-mass spectrometry on 
rock samples collected at Pine Hill and recorded pH, electrical conductivity, and 
elemental concentrations via inductively coupled plasma mass spectrometry on 
soil samples from Callahan Mine. The re-investigation of lichens of the two 
metal-enriched sites resulted in the addition of 20 taxa to Pine Hill and 10 taxa 
to Callahan Mine. These include Dermatocarpon leptophyllodes, Placynthiella 
hyporhoda, Pyrenocarpon thelostomum, and Vezdaea acicularis, all recorded for 
the first time from New England. In addition, we report the first documented 
records since the late 19th to early 20th century for New England of Porocyphus 
coccodes, Sarcosagium campestre, and Steinia geophana, and the first such 
record for Maine for Coccocarpia palmicola. Stereocaulon condensatum and S. 
subcoralloides, both considered as rare in New England, were also collected 
from Callahan Mine. 

Key Words:	 edaphic ecology, lichen ecology, Maine lichens, metal quarries, 
metal-tolerance, serpentine, superfund sites 

Areas of soil and exposed bedrock rich in heavy metals are 

geologically and ecologically distinct from surrounding areas and 
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may support distinct floras resulting from their disjunction (O’Dell 

and Rajakaruna 2011). These areas can be anthropogenic in origin, 
such as mines where waste accumulation on the surface has 

dramatically changed the landscape, or naturally occurring, such as 

outcrops of ultramafic rock. Decades of research have suggested 

that these ‘‘edaphic islands’’ may harbor a high proportion of 

endemic plants that have evolved to tolerate edaphic stresses (Kay 

et al. 2011; Rajakaruna and Boyd 2008). Often-quoted examples 

include the flora of the island of New Caledonia, which has 

abundant ultramafic rock outcrops and far more endemic species 
than many larger islands (Anacker 2011), and California, which 

supports a high number of species endemic to specific geologies, 

including ultramafic rocks such as serpentinite (Kay et al. 2011; 

Safford et al. 2005). 

Ultramafic rocks contain at least 70% ferromagnesian silicate 

minerals (Kruckeberg 2002); soils weathered from such rocks tend 

to have ratios of calcium (Ca) to magnesium (Mg) , 1, low levels of 

essential nutrients such as nitrogen (N), potassium (K), and 
phosphorous (P), and high levels of heavy metals such as chromium 

(Cr), nickel (Ni), and cobalt (Co) (Brady et al. 2005). The impact 

of geologically unique environments on plant diversity is especial­

ly apparent on serpentinite outcrops (hereafter referred to as 

serpentine), where high levels of heavy metals and low essential 

nutrients such as Ca limit long-term habitation to those species that 

possess mechanisms for edaphic tolerance (Kruckeberg 1986). 

Serpentine environments exert strong selective pressure on plants, 
and adaptations to these unique edaphic conditions drive speciation 

and high rates of endemism (Kay et al. 2011; Kruckeberg 1986; 

O’Dell and Rajakaruna 2011). Because of the distinctiveness and 

global rarity of many of the plants found on serpentine and their 

potential use for the study of plant ecology and evolution (Harrison 

and Rajakaruna 2011), the vascular flora of serpentine outcrops 

have been documented extensively in western North America, New 

Caledonia, Cuba, and Europe (Roberts and Proctor 1992). 
Like serpentine outcrops, metal mines are also edaphically 

stressful environments that typically have shallow and rocky soils 

with low levels of plant nutrients and large concentrations of heavy 

metals (O’Dell and Rajakaruna 2011). Plants growing on metal-

enriched mine tailings, like those on serpentine outcrops, are often 

physiologically distinct and reproductively isolated from their 

relatives growing on nearby uncontaminated soil (Antonovics 
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2006; O’Dell and Rajakaruna 2011), providing opportunities for the 

study of ecological speciation (Kay et al. 2011). 
Compared to vascular plants, lichens on serpentine outcrops 

have received less attention (Favero-Longo et al. 2004; Rajakaruna 

et al. 2012) and, as with vascular plants, very little of the research 

has been carried out in eastern North America (Harris et al. 2007; 

Rajakaruna et al. 2009; Reed 1986; Sirois et al. 1988). This is 

somewhat surprising considering that New England has received 

extensive lichenological study, including investigations of sites with 

unique geologies (see Miller et al. 2005). Brodo (1973) remarked 
that since there is a close relationship between lichen and substrate, 

edaphically extreme substrates may have unique effects on lichens. 

For example, cryptogams have shown high specificity on calcareous 

substrates (Bates 1978). Conversely, a comprehensive review of the 

literature on lichens of serpentine outcrops by Favero-Longo et al. 

(2004) showed no evidence of serpentine endemism in lichens. 

Lichens are apparently less affected by ultramafic substrata than 

vascular plants, possibly because of differences in cell wall structure 
that render the low level of Ca in ultramafic rocks less detrimental 

to lichens than to vascular plants (O’Dell and Rajakaruna 2011). 

Another possible explanation is that the acids produced by many 

lichens can form complexes with a range of elements, thus 

neutralizing their toxicity (Wilson 1995). However, it is possible 

that the physical structure of a rock is as important to the lichen 

biota as its mineralogy, and that climate, elevation, history of land 

use, and other biotic and abiotic factors may have as much, or 
more, influence on the lichen biota as any chemical or physical 

properties of the rock itself; see Rajakaruna et al. (2012) and 

references therein for a full discussion of lichen-metal relations. 

Despite their apparent lack of substrate specificity, lichens are 

able to accumulate heavy metals from metal-rich substrates (Bačkor 

and Loppi 2009; Lambinon et al. 1964; Maquinay et al. 1961) and 

unique lichen ecotypes and mixtures of calcicolous and silicicolous 

species are often found on serpentine outcrops (Favero-Longo et al. 
2004; Rajakaruna et al. 2012). The potential for unique lichen 

assemblages on serpentine outcrops suggests that anthropogenic, 

metal-enriched sites may also provide similar challenges for lichens. 

Purvis (1993) states that the debris left by copper mining creates 

habitat for a variety of lichen species, including those that are rare, 

a factor that should be taken into consideration when old mine sites 

undergo reclamation. 



0 Rhodora [Vol. 116 

To date, only two published studies have documented the lichen 

biota of metal-enriched sites and serpentine outcrops in coastal 
New England. Both studies deal with sites with histories of mining 

or quarrying in Hancock County, Maine, U.S.A. Harris et al. 

(2007) catalogued the lichens of Pine Hill, an abandoned peridotite 

quarry on Little Deer Isle. A species list for the site was presented 

and compared with lists of lichen species recorded in nearby Acadia 

National Park (Sullivan 1996) and serpentine outcrops worldwide 

(Favero-Longo et al. 2004). Comparison between these lists showed 

that Pine Hill hosted two species previously unreported from New 
England, three species previously unreported from Maine, and 20 

species previously unreported from serpentine outcrops worldwide. 

The latter category included Lobaria, a genus not previously 

reported from serpentine elsewhere. Rajakaruna et al. (2011) 

examined Callahan Mine, a copper- and zinc-enriched Superfund 

site in Brooksville. This study provided a species list for the site, 

including information on the general ecology of each species and 

notes on which species were previously known to tolerate or 
accumulate specific heavy metals. This study did not generate any 

new records for Maine or New England, but the authors did note 

the presence of two taxa described as regionally rare or declining, 

and two taxa reported as copper tolerant. 

The primary objective of the current study was to conduct 

additional field surveys at Pine Hill and Callahan Mine to find 

species that might have been overlooked during the previous efforts. 

Additionally, unidentified lichens collected by Harris et al. (2007) 
and Rajakaruna et al. (2011) were identified during the current study. 

We also investigated the elemental chemistry of the serpentine rocks 

at Pine Hill and the ionic content and other chemical features of the 

soils at Callahan Mine to better characterize substrate tolerances for 

the lichens we collected. We compared the lichen biota of Pine Hill 

and Callahan Mine to a published species list for serpentine from 

Québec (Sirois et al. 1988) and to that of nearby Acadia National 

Park, Maine (Sullivan 1996) to determine whether any species we 
found were previously undocumented from serpentine substrates and 

other habitats in northeastern North America. 

MATERIALS AND METHODS 

Site descriptions. Pine Hill is a former peridotite quarry 

occupying about 40 acres on Little Deer Isle, Hancock County, 
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Maine, USA (44u17907.30N, 68u42906.70W; WGS 84). The outcrop 

is serpentinized peridotite formed during the Jurassic period 

(Hooke 2003). Quarry activities from approximately 1930–1960 

have reduced the outcrop to a half dome and exposed extensive 

vertical faces of unweathered rock with a southern exposure. The 

quarry floor is largely serpentinized gravel overlying bedrock, with 

a number of large boulders near the base of the outcrop. Soils on 

the site range from coarse gravel on the quarry floor, to humus-rich 

organic debris along the three sides of the outcrop, and sandy loam 

at the top of the outcrop. A number of ephemeral freshwater seeps 

exist at the site, creating moist environments in an otherwise dry 

landscape. For additional information on the site see Briscoe et al. 

(2009), Harris et al. (2007), and Pope et al. (2010). 

Callahan Mine is a former intertidal open-pit mine in Brooks­

ville, Hancock County, Maine (44u209N, 68u489W; WGS 84). It has 

been mined intermittently since 1880, the most intensive mining 

taking place from 1968–1972. Callahan Mine was listed as a 

Superfund site in 2002 (Environmental Protection Agency 2013) 

due to elevated levels of heavy metals, including copper (Cu), zinc 

(Zn), lead (Pb), and cadmium (Cd), and organic contaminants such 

as PCBs (Rajakaruna et al. 2011). The site is currently under 

remediation. For a detailed site description see Rajakaruna et al. 

(2011) and Mansfield et al. (2014). 

Rock elemental analysis. Elemental analysis via x-ray fluores­

cence (XRF) was conducted on one composite rock sample each 

from Pine Hill (serpentine) and nearby Settlement Quarry (granite) 

as a comparison. An automated sequential XRF spectrometer 

(Advant’XP+, Thermo ARL, Switzerland) was used, and was run at 

60 keV and 60 mA with a rhodium target. Elemental concentrations 

were determined for major (Al–Ti) and trace (As–Zr) elements. 

For detailed analytical methodology see Rajakaruna et al. (2012). 

Inductively coupled plasma-mass spectrometry (ICP-MS) was used 

to analyze additional trace elements that were not determined by 

XRF analysis. The procedure consists of a low-dilution fusion with 

dilithium tetraborate (SpectromeltH A-10, EM Science, Gibbstown, 

NJ) followed by an open-vial mixed acid digestion. Reagents were 

HNO3 69–70% (Fisher ACS plus grade), HF 48–52% (Baker ACS 

reagent grade), HClO4 67–71% (Fisher Trace Metal Grade), and 

H2O2 (Baker ACS Reagent). The HF was further purified before 

use by sub-boiling distillation in a teflon still. All water used was 
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.18 M deionized water from a Nanopure analytical grade 

water system (Barnstead/Thermolyne, Dubuque, IA). Powdered 
rock samples were mixed with an equal amount of dilithium 

tetraborate flux (typically 2 g), placed in a carbon crucible and 

fused at 1000uC in a muffle furnace for 30 min. After cooling, the 

resultant fusion bead was briefly ground in a carbon-steel ring mill 

and a 250 mg portion was weighed into a 30 ml, screw-top Teflon 

PFA vial for dissolution. The acid dissolution consisted of a first 

evaporation with HNO3 (2ml), HF (6 ml), and HClO4 (2 ml) at 

110uC. After evaporating to dryness, the sample was wetted and the 
sides of the vial were rinsed with a small amount of water before a 

second evaporation with HClO4 (2 ml) at 160uC. After the second 

evaporation, samples were brought into solution by adding 

approximately 10 ml of water, 3 ml HNO3, 5 drops H2O2, and 2 

drops HF, and warmed on a hot plate until a clear solution was 

obtained. The sample was then transferred to a clean 60 ml HDPE 

bottle and diluted up to a final weight of 60 g with deionized water. 

Solutions were analyzed on an Agilent Model 4500 ICP-MS and 
were diluted an additional 103 at the time of analysis using 

Agilent’s Integrated Sample Introduction System (ISIS; Agilent 

Technologies, Santa Clara, CA). All analyses were performed at the 

Hooper GeoAnalytical Laboratory, Washington State University, 

WA, USA. 

Soil chemical analysis. The lichens at Callahan Mine were 

collected from within or close to the plots established by Mansfield 

et al. (2014). Therefore, we used the same soil chemical data 

reported in their Table 4 (for the tailings pond, waste rock piles, and 

habitats ‘in between’) to better characterize the range of tolerance 

to various soil chemical features for the lichens we collected. 

Methods of soil analyses are reported in Mansfield et al. (2014). 

Lichen identification. Lichens for this study were collected by R. 

C. Harris (New York Botanical Garden, NY, USA) in 2009 and by 

one of us (A.M.F.) in 2013. Several unidentified Cladonia and 
Lepraria specimens, collected in 2004 by T. B. Harris as part of the 

original Pine Hill lichen survey (Harris et al. 2007) and deposited at 
HCOA, were also identified for this project by one of us (I.D.M.). 

Lichens were identified by A.M.F. and I.D.M. using a variety of 

published keys, including Brodo et al. (2001), Gowan and Brodo 

(1988), and Hinds and Hinds (2007). Two collections that we were 

unable to identify to species (Aspicilia and Lichinaceae) were 
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sent to experts in these groups. Thin-layer chromatography was 

performed and secondary metabolites identified according to 
procedures and data in Orange et al. (2001). Nomenclature follows 

Esslinger (2012). Voucher specimens for this study and Harris et al. 

(2007) have been deposited at HCOA, MSC, NBM, and NY. 

Lichen distribution data for North America are mostly scattered 

within the literature and difficult to obtain. The recent innovation 

of the Consortium of North American Lichen Herbaria (CNALH), 

which aims to digitize the label data from all lichen collections in 

North American herbaria, was initiated to correct this deficit and 
we have based our assumptions of species’ distributions on records 

contained in this database. This is an unsatisfactory solution, but 

the best that is currently available. Additionally, the distribution of 

New England macrolichens was based on Hinds and Hinds (2007). 

RESULTS 

Recent collections and re-examination of previously collected 
lichen material have resulted in the addition of 20 taxa to the species 

list for Pine Hill, and 10 taxa to that of Callahan Mine (Appendix). 

There are now 82 lichen taxa from 40 genera known from Pine Hill 

and 84 lichen taxa from 41 genera known from Callahan Mine. 

Fifty-nine percent (48/82) of the Pine Hill taxa and 64% (54/84) of 

the Callahan Mine taxa are shared with the lichen biota of Acadia 

National Park as documented by Sullivan (1996), the most recent 

comprehensive lichenological survey of the Park. Fifty-two percent 
of Pine Hill taxa (43/82) are shared with Sirois et al. (1988), the only 

published study of lichens of serpentine rocks in northeastern 

North America besides the current study and Harris et al. (2007). 

The new collections include Dermatocarpon leptophyllodes, 

Placynthiella hyporhoda, Pyrenocarpon thelostomum, and Vezdaea 
acicularis, which are all recorded for the first time from New 

England. In addition, since the late 19th to early 20th century for 

New England, this survey has furnished the first modern 
documented records of Porocyphus coccodes, Sarcosagium campes­

tre, and Steinia geophana, and the first such record from Maine for 

Coccocarpia palmicola. 

No macrolichens collected for this study are species reported 

by Hinds and Hinds (2007) as globally rare. However, 10 taxa 

were found that, according to these authors, are rare in New 

England: seven from Pine Hill (Cladonia symphycarpa, Coccocarpia 
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palmicola, Fuscopannaria praetermissa, Nephroma parile, Pannaria 
rubiginosa, Psorula rufonigra, and Spilonema revertens) and three 
from Callahan Mine (Stereocaulon condensatum, S. subcoralloides, 

and Leptogium imbricatum). A further three taxa from Pine Hill, 

Anaptychia palmulata, Cladonia boryi, and Parmotrema crinitum, are 

uncommon and potentially declining in New England (Hinds and 

Hinds 2007). 

Eight additional taxa collected from Pine Hill were found by 

Sullivan (1996) in three or fewer study plots out of the 83 locations 

he surveyed: Anaptychia palmulata, Candelariella aurella, Lepraria 
neglecta s. lat. (syn. L. caesioalba), Pannaria rubiginosa, Placyn­

thiella icmalea, Scoliciosporum umbrinum, Xanthoparmelia plittii, and 

Xanthoria elegans. Fourteen taxa collected at Callahan Mine fulfilled 

this criterion for local rarity: Aspicilia aff. verrucigera, Caloplaca 
microthallina, Candelariella aurella, Cladonia phyllophora, C. stygia, 

Montanelia sorediata, Physcia aipolia, P. dubia, P. subtilis, Pla­

cynthiella icmalea, Rhizocarpon grande, Scoliciosporum umbrinum, 

Xanthoparmelia plittii, and Xanthoria elegans. 
Elemental analyses provided substrate chemistry data for the 

rocks (Table 1) and soils (Table 2) from which the lichens were 

collected. The rocks from Pine Hill were distinct from the more 

regionally abundant granite in their high concentrations of heavy 

metals, particularly Cr and Ni, and low concentrations of Ca 

compared to Mg. The granitic rocks from adjacent Settlement 

Quarry, which were analyzed as a comparison, contained relatively 

higher Al and Si and radioactive trace elements such as barium 
(Ba), rubidium (Rb), and strontium (Sr). The mine soils from which 

the lichens were collected were high in Cu, Zn, and Pb. Distinct 

habitats within the mine (tailings pond, waste rock piles, and ‘in 

between’) were found to differ with respect to some soil chemical 

features (Mansfield et al. 2014), notably higher pH, Ca, and Zn in 

the tailings pond, higher sulfur (S) in the waste rock piles, and 

higher Pb in the in between habitats. 

DISCUSSION 

Of the species newly reported from Pine Hill, 14 were not 

reported from Mont Albert by Sirois et al. (1988) and should be 

included in the list of species reported from serpentine from 

northeastern North America (Rajakaruna et al. 2009). These are 

Buellia lepidastra, Cladonia cryptochlorophaea, C. dimorphoclada, 
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Table 1. Elemental chemistry of serpentinite and granite rock samples 
collected from Pine Hill and Settlement Quarry, respectively. Presence of major 
elements (Al–Ti) are reported as % weight, whereas the minor elements (As–Zr) 
are reported as ppm. Major elements and some trace elements were determined 
via x-ray fluorescence analysis (XRF). Additional trace elements (indicated by 
*) were determined by inductively coupled plasma-mass spectrometry (ICP­
MS). LOI 5 % loss on ignition. 

Concentration of Elements 

Element Serpentinite Granite 

Major Elements (% weight) 

Al 6.35 14.17 
Ca 3.71 2.00 
Fe 9.25 2.82 
K 0.06 4.43 
Mg 30.25 0.92 
M 0.155 0.066 
Na 0.04 3.66 
P 0.048 0.171 
Si 38.08 70.74 
Ti 88.39 99.50 
Sum 0.453 0.525 
LOI (%) 10.43 0.58 

Trace Elements (ppm) 

Ba 30 599 
Ce 4 106 
Cr 2824 15 
Cu 83 5 
Cs* 0.58 1.94 
Dy* 1.58 6.64 
Er* 0.88 3.73 
Eu* 0.41 1.46 
Ga 7 18 
Gd* 1.34 6.65 
Hf * 0.81 5.45 
Ho* 0.32 1.32 
La* 0.82 48.30 
Lu* 0.13 0.56 
Nb 1.8 23.4 
Nd 3 44 
Ni 1527 10 
Pb 0 20 
Pr* 0.59 11.90 
Rb 2 152 
Sc 17 7 
Sm* 1.05 7.38 
Sr 30 240 
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Table 1. Continued. 

Concentration of Elements 

Element Serpentinite Granite 

Ta* 0.02 2.20 
Tb* 0.25 1.10 
Th 2 22 
Tm* 0.12 0.57 
U* 0.02 3.60 
V  85  40  
Y  10  37  
Yb* 0.78 3.61 
Zn 67 45 
Zr 33 281 

Table 2. Results from soil analyses at Callahan Mine shown as the mean 
(6SE) for each soil feature. Locations: TP 5 tailings pond, WR 5 waste rock 
piles, IB 5 in between, including shore of Goose Pond; N 5 number of samples 
per location. Elemental concentrations: EC is reported as mmhos/cm and all 
other elemental concentrations are reported as mg/kg (ppm). LOI 5 loss on 
ignition (%). 

Elemental Concentrations at 3 Locations 

TP WR IB 
Soil Feature (N 5 3) (N 5 6) (N 5 5) 

pH 7.5 (60.1) 5.1 (60.6) 5.9 (60.1) 
% LOI 0.6 (60.2) 1.1 (60.1) 5.2 (61.8) 
EC 0.8 (60.3) 0.7 (60.1) 0.7 (60.2) 
NO3-N 1.8 (60.4) 1.4 (60.3) 6.2 (63.1) 
NH4-N 3.7 (60.6) 2.0 (60.1) 8.2 (65.9) 
Ca 16285.0 (61514.9) 2411.5 (61291.7) 2568.6 (61429.0) 
K 11.7 (60.7) 10.5 (61.4) 105.7 (641.7) 
Mg 100.6 (610.7) 66.7 (69.4) 102.4 (632.3) 
Na 5.6 (61.5) 5.8 (60.7) 18.4 (66.3) 
P 20.1 (61.8) 4.1 (61.7) 7.3 (61.2) 
S 89.8 (629.2) 376.7 (6109.8) 164.1 (673.2) 
Al 0.4 (60.0) 9.5 (65.8) 12.4 (611.6) 
Cd 3.0 (60.9) 1.3 (60.5) 2.7 (60.7) 
Cr 0.0 (60.0) 0.0 (60.0) 0.1 (60.0) 
Cu 102.6 (67.2) 107.7 (625.8) 131.6 (626.4) 
Fe 2.5 (60.9) 35.8 (615.6) 117.2 (662.9) 
Mn 0.8 (60.2) 1.8 (60.7) 4.2 (62.0) 
Mo 0.5 (60.0) 0.3 (60.1) 0.4 (60.1) 
Ni 0.5 (60.2) 0.5 (60.1) 1.5 (60.6) 
Pb 9.2 (62.7) 13.2 (65.7) 129.1 (678.1) 
Zn 749.8 (651.9) 368.5 (6118.6) 558.5 (6110.2) 
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C. grayi, Coccocarpia palmicola, Dermatocarpon leptophyllodes, 

Lecidella patavina, Lepraria finkii, Physcia tenella, Placidium 
squamulosum, Porocyphus coccodes, Pyrenocarpon thelostomum, 

Rhizocarpon disporum, and Xanthoparmelia viriduloumbrina. 

Of the lichen taxa newly reported from Pine Hill, Coccocarpia 
palmicola is a mainly tropical species that is known from isolated 

localities along the east coast of North America as far north as 

Newfoundland (CNALH 2013). Our collection is only the second 

record of C. palmicola in New England since the late 19th to early 

20th century, and only the second ever in Maine (Hinds and Hinds 

2007). This species has declined in its New England distribution 

over the past century (Hinds and Hinds 2007), possibly due to the 

susceptibility of cyanolichens to increased air pollution (Richardson 

and Cameron 2004). Nephroma parile and Pannaria rubiginosa, two  

regionally rare cyanolichens (Hinds and Hinds 2007) from Pine 

Hill, may be in decline for the same reason. 

Dermatocarpon leptophyllodes is possibly new to eastern North 

America because it was not included in Hinds and Hinds (2007) and 

all the records in CNALH (2013) are from western states, whereas 

Pyrenocarpon theostomum has previously been reliably reported 

from North America only from Illinois (M. Schultz, Biozentrum 

Klein Flottbek und Botanischer Garten der Universität Hamburg, 

Hamburg, Germany, pers. comm.), not Michigan as reported by 

Dillman et al. (2012). Both were found at Pine Hill in a calcareous 

seep along with Porocyphus coccodes, which is apparently the first 

recent record for New England since it was collected by H. Willey 

in Massachusetts in the 19th century (CNALH 2013). Similarly, 

Coccocarpia palmicola, which has been found on calcareous 

substrates in Massachusetts (Hinds and Hinds 2007), and other 

species known to favor substrates with a high pH, was also found at 

Pine Hill. This is presumably the result of preferential leaching of 

basic cations from the serpentine substrate, a similar effect to that 

reported by Miller et al. (2005) from granitic rocks on Katahdin. 

Coccocarpia palmicola, however, is usually a corticolous species and 

its occurrence in a basic seep on serpentine is most probably a result 

of the additional nutrients provided by this habitat that allow it to 

occur outside its normal range. Two other Pine Hill lichens 

(Cladonia symphycarpa and Fuscopannaria praetermissa), consid­

ered as rare in New England (Hinds and Hinds 2007), are also 

calcicoles. 
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Rarity is not a trait exclusive to calcicoles at Pine Hill. Psorula 
rufonigra and Spilonema revertens are two intimately linked lichen 
taxa, with P. rufonigra occurring only on the thallus of S. revertens. 

They usually occur on acidic rocks but have previously been 

documented in northern New England only on serpentine in 

Vermont (Hinds and Hinds 2007), and were again reported from 

serpentine at Pine Hill. Other uncommon calcifuge species include 

Anaptychia palmulata and Parmotrema crinitum, which are de­

scribed in Hinds and Hinds (2007) as uncommon, and Cladonia 
boryi, which has experienced a range contraction in New England 
over the past century; it is common on the coast of Maine, but 

uncommon elsewhere (Hinds and Hinds 2007). 

Of the species newly reported from Callahan Mine, Placynthiella 
hyporhoda, Sarcosagium campestre, Steinia geophana, and Vezdaea 
acicularis are inconspicuous terricolous species that are almost 

certainly under recorded. However, only Sarcosagium campestre 
and Steinia geophana have previously been documented from 

New England: S. campestre from a 1938 record from Vermont and 
S. geophana from a 19th century record from Massachusetts 

(CNALH 2013). The two, newly reported Stereocaulon species (S. 
condensatum and S. subcoralloides) are also both terricolous species, 

and although both have previously been reported from Maine, both 

are rare with only scattered occurrences (Hinds and Hinds 2007). 

Although not restricted to soils with a high mineral content, all 

these species are often found associated with disused heavy metal 

mines (Plantlife 2012; Purvis and Halls 1996) and the occurrence of 
these rare terricolous species at Callahan Mine is probably an 

indirect effect of the high metal content of the soil that suppresses 

vascular plant growth and provides a suitable substrate for their 

development. 

Two collections from the waste rock pile at Callahan Mine were 

clearly referable to the genus Amandinea (pigmented 1-septate 

ascospores, long curved conidia) but could not confidently be 

identified to species. The immature ascospores had the thickened 
septum typical of A. pelidna but the thallus was not as well 

developed as is usual for this species and the ascospores were also 

smaller than is typical for both A. pelidna and A. punctata. They  

are treated here, along with previous collections, as A. punctata 
aggr. 

Also collected from Callahan Mine was an Aspicilia sp. similar to 

A. verrucigera but with smaller ascospores [13–15(–16) 3 8–10 mm] 
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and conidia [(11–)12–13(–15) mm long], both with a limited range, 

that is probably con-specific with ‘A. verrucigeroides’ (I. Brodo, 
Canadian Museum of Nature, pers. comm.). Molecular analysis 

will be undertaken to determine the systematic position of this 

collection. As A. verrucigera has previously been reported from this 

site we have not included this as a new taxon, but changed the 

listing to A. aff. verrucigera in Appendix. 

Leptogium imbricatum is a rare calcicolous species that was 

collected at Callahan Mine near Goose Pond. Although we do not 

have a pH value for the exact location of this collection, a pH of 5.9 
was reported for the ‘in-between’ soils (Table 2), which included 

soils collected along Goose Pond. Rajakaruna et al. (2011) attribute 

the presence of this and other calcicolous species at Callahan Mine 

to mortar and concrete debris left by the mining operations. Also 

collected from near Goose Pond was Physica subtilis, which is a 

species of non-calcareous rocks, often in sites with sunlight 

exposure (Brodo et al. 2001). Maine is at the northernmost edge 

of its range and it was represented in Sullivan (1996) by a single 
specimen found on an acidic cliff face. The neutral to slightly basic 

pH at the tailings pond, as compared to the low pH values recorded 

for the waste rock piles and ‘in-between’ area, does not exert a 

discernible effect on the distribution of lichens at Callahan Mine. 

However, the four taxa reported from only the tailings pond, 

Peltigera canina, P. rufescens, Sarcosagium campestre, and Steinia 
geophana, all occur primarily on bare, damp ground and are typical 

of recently disturbed soils, although only P. rufescens is reported to 
occur mainly on basic substrata. Although it is difficult to attribute 

any one edaphic factor to the presence of a lichen species, it is likely 

that the fine-textured (silt-clay), metal-enriched, and water-logged 

soils at the tailings pond have created a unique habitat for some 

soil-crust colonizing lichens. 

Five of the species newly reported from Callahan Mine 

(all from damp soil)—Placynthiella hyperhoda, Sarcosagium cam­

pestre, Steinera geophana, Stereocaulon condensatum, and Vezdaea 
acicularus—are considered indicators of an important site for 

metal-tolerant lichens (Plantlife 2012). With the addition of 

Acarospora sinopica, Stereocaulon dactylophyllum, and S. pileatum, 

which were already reported from the site, there are now eight 

taxa considered indicators. Although the Plantlife indicator list was 

intended for metalliferous sites in Wales, it is still relevant to 

eastern North America and, in fact, a further species, Stereocaulon 
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subcoralloides, should probably be added to the list for 

eastern North America. The presence of three indicator species is 
considered to be sufficient to designate a site as important for 

metal-tolerant lichens (Plantlife (2012), so the occurrence of eight 

indicator species at Callahan Mine is indicative of a very important 

site. 

Although the importance of rock mineralogy, including elemen­

tal geochemistry, in determining the composition of saxicolous 

lichen communities has long been recognized (Purvis and Halls 

1996), attempts to analyze the distribution of saxicolous lichens 
according to their lithochemistry are not very common (Brodo 

1973; Werner 1956). Further, studies that directly associate 

mineralogy or elemental chemistry of host rocks to the presence 

of lichen species or the assemblage of lichen communities are 

extremely rare (Boyle et al. 1987; Rajakaruna et al. 2012). Although 

complex interactions between lichens and rocks and lichens 

and elements are often noted (Hauck et al. 2007; Purvis 1996; 

Richardson 1995; Shimizu 2004; Wilson 1995), the exact nature of 
this substratum-level influence on lichens (i.e., whether chemical 

and/or textural) is unclear (Rajakaruna et al. 2012). Our sampling 

strategy does not allow us to directly associate the presence of any 

lichen species that we collected with the concentration of a 

particular element or combination of elements. However, our 

analyses of substrate chemistry of the rocks and soils from which 

these lichens were collected have improved the characterization of 

the range of elemental tolerances for the lichens found at Pine Hill 
and Callahan Mine. 

Our study has highlighted the importance of metal rich rocks and 

soils in harboring rare and unusual lichen species and assemblages. 

An informal survey by the authors of the granitic Settlement 

Quarry in the vicinity of Pine Hill suggests that there are major 

differences between the two sites with regard to the most prevalent 

saxicolous species (Medeiros et al., unpubl. data). However, it is 

unclear whether these differences result from the chemical 
differences we have reported (Table 1) or from surface textural 

differences observed between granitic and serpentinite rocks. 

Surveys of geographically and climatically similar areas with 

different geologies could help answer the question of whether the 

number of regionally rare or uncommon lichen species at Pine Hill 

and Callahan Mine can be attributed to chemical or physical 

features of the substrate, or whether other factors not directly 
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related to geology are the dominant forces at work. Such surveys 

could also reaffirm the importance of conserving diverse habitats to 

protect the diversity of lichens. Additional work to document 

lichens on serpentine outcrops and mine sites elsewhere that are 

exposed to a wide range of climatic and edaphic variation will help 

document the lichen biota of understudied habitats and contribute 

to our understanding of the effects of heavy metals and harsh 

environments on lichen diversity. 
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ä
g

el
i 

(s
y

n
. 

A
ca

ro
sp

o
ra

sm
a

ra
g

d
u

la
) 

–
–

X
X

–
–

–
 

N
ep

h
ro

m
a

 p
a

ri
le

 (
A

ch
.)

 A
ch

. 
X

 
–

 
–

 
–

 
–

 
–

 
X

 
P

a
n

n
a

ri
a

 r
u

b
ig

in
o

sa
 (

T
h

u
n

b
 e

x
 A

ch
.)

 D
el

is
e 

X
 

–
 

–
 

–
 

–
 

–
 

X
 

P
a

rm
el

ia
 s

a
x

a
ti

li
s 

(L
.)

 A
ch

. 
X

 
–

 
–

 
–

 
–

 
–

 
X

 
P

a
rm

el
ia

 s
q

u
a

rr
o

sa
 H

a
le

 
–

 
–

 
–

 
X

 
–

 
–

 
X

 
P

a
rm

el
ia

 s
u

lc
a

ta
 T

a
y

lo
r 

X
 

–
 

–
 

X
 

–
 

X
 

X
 

P
a

rm
o

tr
em

a
 c

ri
n

it
u

m
 (

A
ch

.)
 M

. 
C

h
o

is
y

 
X

 
–

 
–

 
–

 
–

 
–

 
X

 
P

el
ti

g
er

a
 c

a
n

in
a

 (
L

.)
 W

il
ld

. 
–

 –
 –

 –
 

*
X

s 
X

 
–

 
P

el
ti

g
er

a
 d

id
a

ct
y

la
 (

W
it

h
.)

 J
.R

. 
L

a
u

n
d

o
n

 
X

 
–

 
–

 
–

 
–

 
–

 
–

 

Rhodora [Vol. 116 



0 

A
P

P
E

N
D

IX
. 

C
O

N
T

IN
U

E
D

. 

C
a

ll
a

h
a

n
 M

in
e 

P
in

e
M

o
n

t
A

ca
d

ia
S

p
ec

ie
s 

H
il

l 
T

P
 

W
R

 
G

P
 

IB
 

A
lb

er
t 

N
P

P
el

ti
g

er
a

 r
u

fe
sc

en
s 

(W
ei

ss
) 

H
u

m
b

. 
X

 
–

 
X

 
X

 
–

 
–

 
–

 
P

er
tu

sa
ri

a
 a

m
a

ra
 (

A
ch

.)
 N

y
l.

 
X

 
–

 
–

 
–

 
–

 
–

 
X

 
P

h
a

eo
p

h
y

sc
ia

 a
d

ia
st

o
la

 (
E

ss
l.

) 
E

ss
l.

 
X

 
–

 
–

 
–

 
–

 
–

 
–

 
P

h
a

eo
p

h
y

sc
ia

 r
u

b
ro

p
u

lc
h

ra
 (

D
eg

el
.)

 M
o

b
er

g
 

X
 

–
 

–
 

–
 

–
 

–
 

X
 

P
h

a
eo

p
h

y
sc

ia
 s

ci
a

st
ra

 (
A

ch
.)

 M
o

b
er

g
 

X
 

–
 

–
 

–
 

–
 

–
 

–
 

P
h

y
sc

ia
 a

d
sc

en
d

en
s 

(F
r.

) 
H

. 
O

li
v

ie
r 

–
 

–
 

–
 

X
 

–
 

–
 

X
 

P
h

y
sc

ia
 a

ip
o

li
a

 (
E

h
rh

. 
ex

 H
u

m
b

.)
 H

a
m

p
e 

ex
 F

ü 
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lö

rk
e 1

 
–

 
X

 
X

 
X

 
X

 
–

 
X

 
S

te
re

o
ca

u
lo

n
 g

la
u

ce
sc

en
s 

T
u

ck
. 

X
 

–
 

–
 

–
 

–
 

X
 

–
 

S
te

re
o

ca
u

lo
n

 p
il

ea
tu

m
 A

ch
.1

 
–

 
–

 
X

 
X

 
X

 
–

 
X

 
S

te
re

o
ca

u
lo

n
 s

a
x

a
ti

le
 H

. 
M

a
g

n
. 

–
 

–
 

X
 

–
 

–
 

X
 

S
te

re
o

ca
u

lo
n

 s
u

b
co

ra
ll

o
id

es
 N

y
l.

 
–

 
–

 
*

X
s 

*
X

s 
X

 
–

 
S

te
re

o
ca

u
lo

n
 t

o
m

en
to

su
m

 T
h

. 
F

r.
 

–
 

–
 

–
 

X
 

–
 

X
 

X
 

S
ti

g
m

id
iu

m
 s

p
. 

[N
B

M
: 

T
H

 2
8

3
–

2
] 

–
 

–
 

–
 

X
 

–
 

–
 

–
 

Rhodora [Vol. 116 



0 

A
P

P
E

N
D

IX
. 

C
O

N
T

IN
U

E
D

. 

C
a

ll
a

h
a

n
 M

in
e 

P
in

e
M

o
n

t
A

ca
d

ia
S

p
ec

ie
s 

H
il

l 
T

P
 

W
R

 
G

P
 

IB
 

A
lb

er
t 

N
P

T
ra

p
el

ia
 p

la
co

d
io

id
es

 C
o

p
p

in
s 

&
 P

. 
Ja

m
es

 
–

 
–

 
–

 
X

 
–

 
–

 
X


 
T

ra
p

el
io

p
si

s 
g

ra
n

u
lo

sa
 (

H
o

ff
m

.)
 L

u
m

b
sc

h
 

*
X

 
–

 
X

 
X

 
–

 
X

 
X


 
V

er
ru

ca
ri

a
 m

u
ra

li
s 

A
ch

. 
–

 
–

 
X

 
X

 
–

 
–

 
–


 
V

ez
d

a
ea

 a
ci

cu
la

ri
s 

C
o

p
p

in
s1

 
–

 –
 –

 
*
X

s 
–

 
–

 
–


 
X

a
n

th
o

p
a

rm
el

ia
 c

o
n

sp
er

sa
 (

E
h

rh
. 

ex
 A

ch
.)

 H
a

le
 

*
X

r 
–

 
–

 
X

 
–

 
–

 
X


 
X

a
n

th
o

p
a

rm
el

ia
 c

u
m

b
er

la
n

d
ia

 (
G

y
el

n
.)

 H
a

le
 

X
 

–
 

X
 

X
 

–
 

–
 

X

 

X
a

n
th

o
p

a
rm

el
ia

 p
li

tt
ii

 (
G

y
el

n
.)

 H
a

le
 

X
 

–
 

–
 

X
 

–
 

–
 

X

 

X
a

n
th

o
p

a
rm

el
ia

 v
ir

id
u

lo
u

m
b

ri
n

a
 (

G
y

el
n

.)
 L

en
d

em
er

 
*

X
r 

–
 

–
 

X
 

–
 

–
 

–

 

X
a

n
th

o
ri

a
 e

le
g

a
n

s 
(L

in
k

) 
T

h
. 

F
r.

 
X

 
–

 
X

 
X

 
–

 
X

 
X


 
X

a
n

th
o

ri
a

 p
a

ri
et

in
a

 (
L

.)
 B

el
tr

. 
X

 
–

 
–

 
X

 
–

 
–

 
X


 

2014] Medeiros et al.—Lichens of Contaminated Sites 


	San Jose State University
	SJSU ScholarWorks
	January 2014

	Additional lichen records and minerological data from metal-contaminated sites in Maine
	I. D. Medeiros
	A. M. Fryday
	Nishanta Rajakaruna
	Recommended Citation


	untitled

