18 research outputs found

    Prevalence of physical and verbal aggressive behaviours and associated factors among older adults in long-term care facilities

    Get PDF
    BACKGROUND: Verbal and physical aggressive behaviours are among the most disturbing and distressing behaviours displayed by older patients in long-term care facilities. Aggressive behaviour (AB) is often the reason for using physical or chemical restraints with nursing home residents and is a major concern for caregivers. AB is associated with increased health care costs due to staff turnover and absenteeism. METHODS: The goals of this secondary analysis of a cross-sectional study are to determine the prevalence of verbal and physical aggressive behaviours and to identify associated factors among older adults in long-term care facilities in the Quebec City area (n = 2 332). RESULTS: The same percentage of older adults displayed physical aggressive behaviour (21.2%) or verbal aggressive behaviour (21.5%), whereas 11.2% displayed both types of aggressive behaviour. Factors associated with aggressive behaviour (both verbal and physical) were male gender, neuroleptic drug use, mild and severe cognitive impairment, insomnia, psychological distress, and physical restraints. Factors associated with physical aggressive behaviour were older age, male gender, neuroleptic drug use, mild or severe cognitive impairment, insomnia and psychological distress. Finally, factors associated with verbal aggressive behaviour were benzodiazepine and neuroleptic drug use, functional dependency, mild or severe cognitive impairment and insomnia. CONCLUSION: Cognitive impairment severity is the most significant predisposing factor for aggressive behaviour among older adults in long-term care facilities in the Quebec City area. Physical and chemical restraints were also significantly associated with AB. Based on these results, we suggest that caregivers should provide care to older adults with AB using approaches such as the progressively lowered stress threshold model and reactance theory which stress the importance of paying attention to the severity of cognitive impairment and avoiding the use of chemical or physical restraints

    Need-driven dementia-compromised behavior: An alternative view of disruptive behavior

    Full text link
    The disruptive behavior of persons with dementia is a problem of considerable clinical interest and growing scientific concern. This paper offers a view of these behaviors as expressions of unmet needs or goals and provides a comprehensive conceptual framework to guide further research and clinical practice. Empiricalfindings and clinical impressions related to wandering, vocalizations and aggression to support and illustrate the framework are presentedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66887/2/10.1177_153331759601100603.pd

    Prediction of clinically important acquired cardiac disease without an echocardiogram in large breed dogs using a combination of clinical, radiographic and electrocardiographic variables

    Get PDF
    Introduction: Large breed (LB) dogs develop dilated cardiomyopathy (DCM) and myxomatous mitral valve disease (MMVD). Echocardiography is required for a definitive diagnosis but is not always available. Our objective was to assess the clinical utility of thoracic radiographs alone and in combination with physical examination and electrocardiography findings for the prediction of clinically important DCM or MMVD in LB dogs. Animals: Four hundred fifty-five client-owned dogs >20 kg with concurrent thoracic radiographs and echocardiogram. Materials and methods: Medical records were reviewed and stored thoracic radio-graphs and echocardiographic images were measured to classify dogs as normal heart size (NHS), preclinical DCM, clinical DCM, preclinical MMVD (with cardiome-galy), clinical MMVD, or equivocal. Dogs with preclinical MMVD, without cardiome-galy, were classified as NHS. Vertebral heart size (VHS) and vertebral left atrial size (VLAS) were measured. Receiver operating characteristic curves and prediction models were derived. Results: Prevalence of MMVD (39 .3%) was higher than the prevalence of DCM (24.8%), though most MMVD dogs (67.0%) lacked cardiomegaly and were classified as NHS for analysis. The area under the curve for VHS to discriminate between NHS and clinical DCM/MMVD or preclinical DCM/MMVD was 0.861 and 0.712, respec-tively, while for VLAS, it was 0.891 and 0.722, respectively. Predictive models incor-porating physical examination and electrocardiography findings in addition to VHS/ VLAS increased area under the curve to 0.978 (NHS vs. clinical DCM/MMVD) and 0.829 (NHS vs. preclinical DCM/MMVD). Conclusions: Thoracic radiographs were useful for predicting clinically important DCM or MMVD in LB dogs, with improved discriminatory ability when physical exam-ination abnormalities and arrhythmias were accounted for.@ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial.

    Get PDF
    BACKGROUND: The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be curtailed by vaccination. We assessed the safety, reactogenicity, and immunogenicity of a viral vectored coronavirus vaccine that expresses the spike protein of SARS-CoV-2. METHODS: We did a phase 1/2, single-blind, randomised controlled trial in five trial sites in the UK of a chimpanzee adenovirus-vectored vaccine (ChAdOx1 nCoV-19) expressing the SARS-CoV-2 spike protein compared with a meningococcal conjugate vaccine (MenACWY) as control. Healthy adults aged 18-55 years with no history of laboratory confirmed SARS-CoV-2 infection or of COVID-19-like symptoms were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 at a dose of 5 × 1010 viral particles or MenACWY as a single intramuscular injection. A protocol amendment in two of the five sites allowed prophylactic paracetamol to be administered before vaccination. Ten participants assigned to a non-randomised, unblinded ChAdOx1 nCoV-19 prime-boost group received a two-dose schedule, with the booster vaccine administered 28 days after the first dose. Humoral responses at baseline and following vaccination were assessed using a standardised total IgG ELISA against trimeric SARS-CoV-2 spike protein, a muliplexed immunoassay, three live SARS-CoV-2 neutralisation assays (a 50% plaque reduction neutralisation assay [PRNT50]; a microneutralisation assay [MNA50, MNA80, and MNA90]; and Marburg VN), and a pseudovirus neutralisation assay. Cellular responses were assessed using an ex-vivo interferon-γ enzyme-linked immunospot assay. The co-primary outcomes are to assess efficacy, as measured by cases of symptomatic virologically confirmed COVID-19, and safety, as measured by the occurrence of serious adverse events. Analyses were done by group allocation in participants who received the vaccine. Safety was assessed over 28 days after vaccination. Here, we report the preliminary findings on safety, reactogenicity, and cellular and humoral immune responses. The study is ongoing, and was registered at ISRCTN, 15281137, and ClinicalTrials.gov, NCT04324606. FINDINGS: Between April 23 and May 21, 2020, 1077 participants were enrolled and assigned to receive either ChAdOx1 nCoV-19 (n=543) or MenACWY (n=534), ten of whom were enrolled in the non-randomised ChAdOx1 nCoV-19 prime-boost group. Local and systemic reactions were more common in the ChAdOx1 nCoV-19 group and many were reduced by use of prophylactic paracetamol, including pain, feeling feverish, chills, muscle ache, headache, and malaise (all p<0·05). There were no serious adverse events related to ChAdOx1 nCoV-19. In the ChAdOx1 nCoV-19 group, spike-specific T-cell responses peaked on day 14 (median 856 spot-forming cells per million peripheral blood mononuclear cells, IQR 493-1802; n=43). Anti-spike IgG responses rose by day 28 (median 157 ELISA units [EU], 96-317; n=127), and were boosted following a second dose (639 EU, 360-792; n=10). Neutralising antibody responses against SARS-CoV-2 were detected in 32 (91%) of 35 participants after a single dose when measured in MNA80 and in 35 (100%) participants when measured in PRNT50. After a booster dose, all participants had neutralising activity (nine of nine in MNA80 at day 42 and ten of ten in Marburg VN on day 56). Neutralising antibody responses correlated strongly with antibody levels measured by ELISA (R2=0·67 by Marburg VN; p<0·001). INTERPRETATION: ChAdOx1 nCoV-19 showed an acceptable safety profile, and homologous boosting increased antibody responses. These results, together with the induction of both humoral and cellular immune responses, support large-scale evaluation of this candidate vaccine in an ongoing phase 3 programme. FUNDING: UK Research and Innovation, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research (NIHR), NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and the German Center for Infection Research (DZIF), Partner site Gießen-Marburg-Langen
    corecore