158 research outputs found
Nodeless superconductivity in the noncentrosymmetric MoRhN superconductor: a SR study
The noncentrosymmetric superconductor MoRhN, with K,
adopts a -Mn-type structure (space group 432), similar to that of
MoAlC. Its bulk superconductivity was characterized by magnetization
and heat-capacity measurements, while its microscopic electronic properties
were investigated by means of muon-spin rotation and relaxation (SR). The
low-temperature superfluid density, measured via transverse-field (TF)-SR,
evidences a fully-gapped superconducting state with , very close to 1.76 - the BCS gap value for
the weak coupling case, and a magnetic penetration depth nm.
The absence of spontaneous magnetic fields below the onset of
superconductivity, as determined by zero-field (ZF)-SR measurements, hints
at a preserved time-reversal symmetry in the superconducting state. Both TF-and
ZF-SR results evidence a spin-singlet pairing in MoRhN.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid
Communication in Phys. Rev.
Observation of insulator-metal transition in EuNiO under high pressure
The charge transfer antiferromagnetic (T =220 K) insulator EuNiO
undergoes, at ambient pressure, a temperature-induced metal insulator MI
transition at T=463 K. We have investigated the effect of pressure (up
to p~20 GPa) on the electronic, magnetic and structural properties of
EuNiO using electrical resistance measurements, {151}^Eu nuclear
resonance scattering of synchrotron radiation and x-ray diffraction,
respectively. With increasing pressure we find at p =5.8 GPa a transition
from the insulating state to a metallic state, while the orthorhombic structure
remains unchanged up to 20 GPa. The results are explained in terms of a gradual
increase of the electronic bandwidth with increasing pressure, which results in
a closing of the charge transfer gap. It is further shown that the
pressure-induced metallic state exhibits magnetic order with a lowervalue of
T (T ~120 K at 9.4 GPa) which disappears between 9.4 and 14.4 GPa.Comment: 10 pages, 3 figure
Metal-insulator transition in NdEuNiO compounds
Polycrystalline NdEuNiO () compounds
were synthesized in order to investigate the character of the metal-insulator
(MI) phase transition in this series. Samples were prepared through the sol-gel
route and subjected to heat treatments at 1000 C under oxygen
pressures as high as 80 bar. X-ray Diffraction (XRD) and Neutron Powder
Diffraction (NPD), electrical resistivity , and Magnetization
measurements were performed on these compounds. The results of NPD and XRD
indicated that the samples crystallize in an orthorhombic distorted perovskite
structure, space group . The analysis of the structural parameters
revealed a sudden and small expansion of 0.2% of the unit cell volume
when electronic localization occurs. This expansion was attributed to a small
increase of 0.003 \AA{} of the average Ni-O distance and a simultaneous
decrease of of the Ni-O-Ni superexchange angle. The
measurements revealed a MI transition occurring at temperatures
ranging from to 336 K for samples with and 0.50,
respectively. These measurements also show a large thermal hysteresis in
NdNiO during heating and cooling processes suggesting a first-order
character of the phase transition at . The width of this thermal
hysteresis was found to decrease appreciably for the sample
NdEuNiO. The results indicate that cation disorder
associated with increasing substitution of Nd by Eu is responsible for changing
the first order character of the transition in NdNiO.Comment: 19 pages, 9 figure
Crystal structure and phonon softening in Ca3Ir4Sn13
We investigated the crystal structure and lattice excitations of the ternary
intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering
techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily
refined using the space group Pm-3n. Below T* the crystal structure is
modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a
merohedral twinning in which three tetragonal domains overlap to mimic a higher
symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and
neutron spectroscopy results show that the structural transition at T* is of a
second-order, and that it is well described by mean-field theory. Inelastic
neutron scattering data point towards a displacive structural transition at T*
arising from the softening of a low-energy phonon mode with an energy gap of
Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode
is identified as a 'breathing' mode of the Sn12 icosahedra and is consistent
with the thermal ellipsoids of the Sn2 atoms found by single crystal
diffraction data
The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions
We study the effect of Coulomb interactions in transition metal oxides
junctions. In this paper we analyze charge transfer at the interface of a three
layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose
a charge model considering a few atomic planes within each layer and obtain
results for the magnetic coupling between the ferromagnetic layers. For large
number of planes in the paramagnetic spacer we find that the coupling
oscillates with the same period as in RKKY but the amplitude is sensitive to
the Coulomb energy. At small spacer thickness however, large differences may
appear as function of : the number of electrons per atom in the ferromagnetics
and paramagnetics materials, the dielectric constant at each component, and the
charge defects at the interface plane emphasizing the effects of charge
transfer.Comment: tex file and 7 figure
Nodeless superconductivity and preserved time-reversal symmetry in the noncentrosymmetric Mo3P superconductor
We report a comprehensive study of the noncentrosymmetric superconductor
MoP. Its bulk superconductivity, with K, was characterized via
electrical resistivity, magnetization, and heat-capacity measurements, while
its microscopic electronic properties were investigated by means of muon-spin
rotation/relaxation (SR) and nuclear magnetic resonance (NMR) techniques.
In the normal state, NMR relaxation data indicate an almost ideal metallic
behavior, confirmed by band-structure calculations, which suggest a relatively
high electron density of states, dominated by the Mo -orbitals. The
low-temperature superfluid density, determined via transverse-field SR and
electronic specific heat, suggest a fully-gapped superconducting state in
MoP, with meV, the same as the BCS gap value in the
weak-coupling case, and a zero-temperature magnetic penetration depth
nm. The absence of spontaneous magnetic fields below the
onset of superconductivity, as determined from zero-field SR measurements,
indicates a preserved time-reversal symmetry in the superconducting state of
MoP and, hence, spin-singlet pairing.Comment: 13 pages, 16 figures, accepted by Phys. Rev.
- …