158 research outputs found

    Nodeless superconductivity in the noncentrosymmetric Mo3_3Rh2_2N superconductor: a μ\muSR study

    Full text link
    The noncentrosymmetric superconductor Mo3_3Rh2_2N, with Tc=4.6T_c = 4.6 K, adopts a β\beta-Mn-type structure (space group PP41_132), similar to that of Mo3_3Al2_2C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation and relaxation (μ\muSR). The low-temperature superfluid density, measured via transverse-field (TF)-μ\muSR, evidences a fully-gapped superconducting state with Δ0=1.73kBTc\Delta_0 = 1.73 k_\mathrm{B}T_c, very close to 1.76 kBTck_\mathrm{B}T_c - the BCS gap value for the weak coupling case, and a magnetic penetration depth λ0=586\lambda_0 = 586 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined by zero-field (ZF)-μ\muSR measurements, hints at a preserved time-reversal symmetry in the superconducting state. Both TF-and ZF-μ\muSR results evidence a spin-singlet pairing in Mo3_3Rh2_2N.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid Communication in Phys. Rev.

    Observation of insulator-metal transition in EuNiO3_{3} under high pressure

    Full text link
    The charge transfer antiferromagnetic (TN_{N} =220 K) insulator EuNiO3_{3} undergoes, at ambient pressure, a temperature-induced metal insulator MI transition at TMI_{MI}=463 K. We have investigated the effect of pressure (up to p~20 GPa) on the electronic, magnetic and structural properties of EuNiO3_{3} using electrical resistance measurements, {151}^Eu nuclear resonance scattering of synchrotron radiation and x-ray diffraction, respectively. With increasing pressure we find at pc_{c} =5.8 GPa a transition from the insulating state to a metallic state, while the orthorhombic structure remains unchanged up to 20 GPa. The results are explained in terms of a gradual increase of the electronic bandwidth with increasing pressure, which results in a closing of the charge transfer gap. It is further shown that the pressure-induced metallic state exhibits magnetic order with a lowervalue of TN_{N} (TN_{N} ~120 K at 9.4 GPa) which disappears between 9.4 and 14.4 GPa.Comment: 10 pages, 3 figure

    Metal-insulator transition in Nd1x_{1-x}Eux_{x}NiO3_{3} compounds

    Full text link
    Polycrystalline Nd1x_{1-x}Eux_{x}NiO3_3 (0x0.50 \leq x \leq 0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at \sim1000 ^\circC under oxygen pressures as high as 80 bar. X-ray Diffraction (XRD) and Neutron Powder Diffraction (NPD), electrical resistivity ρ(T)\rho(T), and Magnetization M(T)M(T) measurements were performed on these compounds. The results of NPD and XRD indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group PbnmPbnm. The analysis of the structural parameters revealed a sudden and small expansion of \sim0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of \sim0.003 \AA{} of the average Ni-O distance and a simultaneous decrease of \sim0.5- 0.5^\circ of the Ni-O-Ni superexchange angle. The ρ(T)\rho(T) measurements revealed a MI transition occurring at temperatures ranging from TMI193T_{\rm MI}\sim 193 to 336 K for samples with x=0x = 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO3_{3} during heating and cooling processes suggesting a first-order character of the phase transition at TMIT_{\rm MI}. The width of this thermal hysteresis was found to decrease appreciably for the sample Nd0.7_{0.7}Eu0.3_{0.3}NiO3_{3}. The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first order character of the transition in NdNiO3_{3}.Comment: 19 pages, 9 figure

    Crystal structure and phonon softening in Ca3Ir4Sn13

    Full text link
    We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode is identified as a 'breathing' mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single crystal diffraction data

    The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions

    Full text link
    We study the effect of Coulomb interactions in transition metal oxides junctions. In this paper we analyze charge transfer at the interface of a three layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose a charge model considering a few atomic planes within each layer and obtain results for the magnetic coupling between the ferromagnetic layers. For large number of planes in the paramagnetic spacer we find that the coupling oscillates with the same period as in RKKY but the amplitude is sensitive to the Coulomb energy. At small spacer thickness however, large differences may appear as function of : the number of electrons per atom in the ferromagnetics and paramagnetics materials, the dielectric constant at each component, and the charge defects at the interface plane emphasizing the effects of charge transfer.Comment: tex file and 7 figure

    Nodeless superconductivity and preserved time-reversal symmetry in the noncentrosymmetric Mo3P superconductor

    Full text link
    We report a comprehensive study of the noncentrosymmetric superconductor Mo3_3P. Its bulk superconductivity, with Tc=5.5T_c = 5.5 K, was characterized via electrical resistivity, magnetization, and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation/relaxation (μ\muSR) and nuclear magnetic resonance (NMR) techniques. In the normal state, NMR relaxation data indicate an almost ideal metallic behavior, confirmed by band-structure calculations, which suggest a relatively high electron density of states, dominated by the Mo 4d4d-orbitals. The low-temperature superfluid density, determined via transverse-field μ\muSR and electronic specific heat, suggest a fully-gapped superconducting state in Mo3_3P, with Δ0=0.83\Delta_0= 0.83 meV, the same as the BCS gap value in the weak-coupling case, and a zero-temperature magnetic penetration depth λ0=126\lambda_0 = 126 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined from zero-field μ\muSR measurements, indicates a preserved time-reversal symmetry in the superconducting state of Mo3_3P and, hence, spin-singlet pairing.Comment: 13 pages, 16 figures, accepted by Phys. Rev.
    corecore