308 research outputs found

    Structure and superconductivity in the binary Re1x_{1-x}Mox_x alloys

    Full text link
    The binary Re1x_{1-x}Mox_x alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. By varying the Re/Mo ratio we explore the full Re1x_{1-x}Mox_x binary phase diagram, in all its four different solid phases: hcp-Mg (P63/mmcP6_3/mmc), α\alpha-Mn (I43mI\overline{4}3m), β\beta-CrFe (P42/mnmP4_2/mnm), and bcc-W (Im3mIm\overline{3}m), of which the second is non-centrosymmetric with the rest being centrosymmetric. All Re1x_{1-x}Mox_x alloys are superconductors, whose critical temperatures exhibit a peculiar phase diagram, characterized by three different superconducting regions. In most alloys the TcT_c is almost an order of magnitude higher than in pure Re and Mo. Low-temperature electronic specific-heat data evidence a fully-gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling across the series. Considering that several α\alpha-Mn-type ReTT alloys (TT = transition metal) show time-reversal symmetry breaking (TRSB) in the superconducting state, while TRS is preserved in the isostructural Mg10_{10}Ir19_{19}B16_{16} or Nb0.5_{0.5}Os0.5_{0.5}, the Re1x_{1-x}Mox_x alloys represent another suitable system for studying the interplay of space-inversion, gauge, and time-reversal symmetries in future experiments expected to probe TRSB in the ReTT family.Comment: 8 pages, 7 figures, accepted for publication on Physical Review Material

    Observation of insulator-metal transition in EuNiO3_{3} under high pressure

    Full text link
    The charge transfer antiferromagnetic (TN_{N} =220 K) insulator EuNiO3_{3} undergoes, at ambient pressure, a temperature-induced metal insulator MI transition at TMI_{MI}=463 K. We have investigated the effect of pressure (up to p~20 GPa) on the electronic, magnetic and structural properties of EuNiO3_{3} using electrical resistance measurements, {151}^Eu nuclear resonance scattering of synchrotron radiation and x-ray diffraction, respectively. With increasing pressure we find at pc_{c} =5.8 GPa a transition from the insulating state to a metallic state, while the orthorhombic structure remains unchanged up to 20 GPa. The results are explained in terms of a gradual increase of the electronic bandwidth with increasing pressure, which results in a closing of the charge transfer gap. It is further shown that the pressure-induced metallic state exhibits magnetic order with a lowervalue of TN_{N} (TN_{N} ~120 K at 9.4 GPa) which disappears between 9.4 and 14.4 GPa.Comment: 10 pages, 3 figure

    Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states

    Get PDF
    A gradual spin-state transition occurs in LaCoO3 around T~80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering (INS), and found that with increasing temperature an excitation at ~0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal field interaction and spin-orbit coupling we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (IS, S=1) vs. high-spin (HS, S=2) states. Since the g-factor obtained from the field dependence of the INS is g~3, the second interpretation looks more plausible.Comment: 10 pages, 4 figure

    Nodeless superconductivity in the noncentrosymmetric Mo3_3Rh2_2N superconductor: a μ\muSR study

    Full text link
    The noncentrosymmetric superconductor Mo3_3Rh2_2N, with Tc=4.6T_c = 4.6 K, adopts a β\beta-Mn-type structure (space group PP41_132), similar to that of Mo3_3Al2_2C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation and relaxation (μ\muSR). The low-temperature superfluid density, measured via transverse-field (TF)-μ\muSR, evidences a fully-gapped superconducting state with Δ0=1.73kBTc\Delta_0 = 1.73 k_\mathrm{B}T_c, very close to 1.76 kBTck_\mathrm{B}T_c - the BCS gap value for the weak coupling case, and a magnetic penetration depth λ0=586\lambda_0 = 586 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined by zero-field (ZF)-μ\muSR measurements, hints at a preserved time-reversal symmetry in the superconducting state. Both TF-and ZF-μ\muSR results evidence a spin-singlet pairing in Mo3_3Rh2_2N.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid Communication in Phys. Rev.

    Room-temperature structural phase transition in the quasi-2D spin-1/2 Heisenberg antiferromagnet Cu(pz)2_2(ClO4_4)2_2

    Full text link
    Cu(pz)2_2(ClO4_4)2_2 (with pz denoting pyrazine C4_4H4_4N2_2) is a two-dimensional spin-1/2 square-lattice antiferromagnet with TNT_{\mathrm{N}} = 4.24 K. Due to a persisting focus on the low-temperature magnetic properties, its room-temperature structural and physical properties caught no attention up to now. Here we report a study of the structural features of Cu(pz)2_2(ClO4_4)2_2 in the paramagnetic phase, up to 330 K. By employing magnetization, specific heat, 35^{35}Cl nuclear magnetic resonance, and neutron diffraction measurements, we provide evidence of a second-order phase transition at TT^{\star} = 294 K, not reported before. The absence of a magnetic ordering across TT^{\star} in the magnetization data, yet the presence of a sizable anomaly in the specific heat, suggest a structural order-to-disorder type transition. NMR and neutron-diffraction data corroborate our conjecture, by revealing subtle angular distortions of the pyrazine rings and of ClO4^-_4 counteranion tetrahedra, shown to adopt a configuration of higher symmetry above the transition temperature.Comment: 10 pages, 12 figure

    Probing the pairing symmetry in the over-doped Fe-based superconductor Ba_0.35Rb_0.65Fe_2As_2 as a function of hydrostatic pressure

    Full text link
    We report muon spin rotation experiments on the magnetic penetration depth lambda and the temperature dependence of lambda^{-2} in the over-doped Fe-based high-temperature superconductor (Fe-HTS) Ba_{1-x}Rb_ xFe_2As_2 (x = 0.65) studied at ambient and under hydrostatic pressures up to p = 2.3 GPa. We find that in this system lambda^{-2}(T) is best described by d-wave scenario. This is in contrast to the case of the optimally doped x = 0.35 system which is known to be a nodeless s^{+-}-wave superconductor. This suggests that the doping induces the change of the pairing symmetry from s^{+-} to d-wave in Ba_{1-x}Rb_{x}Fe_{2}As_{2}. In addition, we find that the d-wave order parameter is robust against pressure, suggesting that d is the common and dominant pairing symmetry in over-doped Ba_{1-x}Rb_{x}Fe_{2}As_{2}. Application of pressure of p = 2.3 GPa causes a decrease of lambda(0) by less than 5 %, while at optimal doping x = 0.35 a significant decrease of lambda(0) was reported. The superconducting transition temperature T_c as well as the gap to T_c ratio 2Delta/k_BT_c show only a modest decrease with pressure. By combining the present data with those previously obtained for optimally doped system x = 0.35 and for the end member x = 1 we conclude that the SC gap symmetry as well as the pressure effects on the SC quantities strongly depend on the Rb doping level. These results are discussed in the light of the putative Lifshitz transition, i.e., a disappearance of the electron pockets in the Fermi surface of Ba_{1-x}Rb_{x}Fe_{2}As_{2} upon hole doping.Comment: Accepted for publication in Physical Review

    Metal-insulator transition in Nd1x_{1-x}Eux_{x}NiO3_{3} compounds

    Full text link
    Polycrystalline Nd1x_{1-x}Eux_{x}NiO3_3 (0x0.50 \leq x \leq 0.5) compounds were synthesized in order to investigate the character of the metal-insulator (MI) phase transition in this series. Samples were prepared through the sol-gel route and subjected to heat treatments at \sim1000 ^\circC under oxygen pressures as high as 80 bar. X-ray Diffraction (XRD) and Neutron Powder Diffraction (NPD), electrical resistivity ρ(T)\rho(T), and Magnetization M(T)M(T) measurements were performed on these compounds. The results of NPD and XRD indicated that the samples crystallize in an orthorhombic distorted perovskite structure, space group PbnmPbnm. The analysis of the structural parameters revealed a sudden and small expansion of \sim0.2% of the unit cell volume when electronic localization occurs. This expansion was attributed to a small increase of \sim0.003 \AA{} of the average Ni-O distance and a simultaneous decrease of \sim0.5- 0.5^\circ of the Ni-O-Ni superexchange angle. The ρ(T)\rho(T) measurements revealed a MI transition occurring at temperatures ranging from TMI193T_{\rm MI}\sim 193 to 336 K for samples with x=0x = 0 and 0.50, respectively. These measurements also show a large thermal hysteresis in NdNiO3_{3} during heating and cooling processes suggesting a first-order character of the phase transition at TMIT_{\rm MI}. The width of this thermal hysteresis was found to decrease appreciably for the sample Nd0.7_{0.7}Eu0.3_{0.3}NiO3_{3}. The results indicate that cation disorder associated with increasing substitution of Nd by Eu is responsible for changing the first order character of the transition in NdNiO3_{3}.Comment: 19 pages, 9 figure
    corecore