1,043 research outputs found

    Influence of disorder on the structural phase transition and magnetic interactions in Ba3x_{3-x}Srx_xCr2_2O8_8

    Full text link
    The spin dimer system Ba3xSrxCr2O8\mathrm{Ba}_{3-x}\mathrm{Sr}_x\mathrm{Cr_2O_8} is a solid solution of the triplon Bose-Einstein condensation candidates Ba3Cr2O8\mathrm{Ba_3Cr_2O_8} and Sr3Cr2O8\mathrm{Sr_3Cr_2O_8}. The magnetic intradimer interaction constant J0J_0 in this spin system can be tuned by varying the Sr content xx. Very interestingly, this variation of J0J_0 with xx is highly nonlinear. In the present study, we show that this peculiar behavior of J0J_0 can be only partly explained by the changes in the average crystal structure alone. We report on neutron powder diffraction experiments to probe the corresponding structural details. Performing extended H\"{u}ckel tight binding calculations based on those structural details obtained at liquid helium temperatures, we found that the change of the magnetic interaction constant can be well reproduced by taking into account the presence of a structural transition due to the Jahn-Teller active Cr5+^{5+}-ions. This transition, lifting the orbital degeneracy and thereby the magnetic frustration in the system, is heavily influenced by disorder in the system arising from partially exchanging Ba with Sr

    Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy

    Get PDF
    Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that mainly deliver chemotherapeutic agents to molecular targets overexpressed on the surface of tumor cells. In particular, we offer a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers, respectively, emphasizing those that have received FDA approval or are part of the most important clinical studies up to date. These drug carriers not only transport the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, payload and solubility of cytotoxic agents and reduce renal clearance.Despite the many advantages of all the anticancer drug carriers analyzed, only a few of them have reached the FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, there are no FDA approvals or clinical trials in process up to date due to their unresolved toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to active and passive tumor targeting published in the last 5 years, since they have a huge potential in cancer therapy, being one of the most widely studied nano-platforms in this field in the last years. The interest that these formulations have recently achieved is stressed by the fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have been published in the last 6 years (PubMed search).Authors acknowledge financial support from University of Salamanca, Spain. AFM work is supported by grants FIS PI13/02846 and RTICC RD12/0036/0001 from Instituto de Salud Carlos III (ISCIII), Spain, and grant SA181U13 from JCyL, Spain. EPH work is supported by grant FS/25-2014 from Fundación en Memoria de D. Samuel Solórzano Barruso, Spain.Peer Reviewe

    Pushing the limits of magnetic anisotropy in trigonal bipyramidal Ni(II)

    Get PDF
    Monometallic complexes based on 3d transition metal ions in certain axial coordination environments can exhibit appreciably enhanced magnetic anisotropy, important for memory applications, due to stabilisation of an unquenched orbital moment. For high-spin trigonal bipyramidal Ni(II), if competing structural distortions can be minimised, this may result in an axial anisotropy that is at least an order of magnitude stronger than found for orbitally non-degenerate octahedral complexes. Broadband, high-field EPR studies of [Ni(MDABCO)2Cl3]ClO4 (1) confirm an unprecedented axial magnetic anisotropy, which pushes the limits of the familiar spin-only description. Crucially, compared to complexes with multidentate ligands that encapsulate the metal ion, we see only a very small degree of axial symmetry breaking. 1 displays field-induced slow magnetic relaxation, which is rare for monometallic Ni(II) complexes due to efficient spin–lattice and quantum tunnelling relaxation pathways

    Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states

    Get PDF
    A gradual spin-state transition occurs in LaCoO3 around T~80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering (INS), and found that with increasing temperature an excitation at ~0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal field interaction and spin-orbit coupling we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (IS, S=1) vs. high-spin (HS, S=2) states. Since the g-factor obtained from the field dependence of the INS is g~3, the second interpretation looks more plausible.Comment: 10 pages, 4 figure

    Structure and superconductivity in the binary Re1x_{1-x}Mox_x alloys

    Full text link
    The binary Re1x_{1-x}Mox_x alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. By varying the Re/Mo ratio we explore the full Re1x_{1-x}Mox_x binary phase diagram, in all its four different solid phases: hcp-Mg (P63/mmcP6_3/mmc), α\alpha-Mn (I43mI\overline{4}3m), β\beta-CrFe (P42/mnmP4_2/mnm), and bcc-W (Im3mIm\overline{3}m), of which the second is non-centrosymmetric with the rest being centrosymmetric. All Re1x_{1-x}Mox_x alloys are superconductors, whose critical temperatures exhibit a peculiar phase diagram, characterized by three different superconducting regions. In most alloys the TcT_c is almost an order of magnitude higher than in pure Re and Mo. Low-temperature electronic specific-heat data evidence a fully-gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling across the series. Considering that several α\alpha-Mn-type ReTT alloys (TT = transition metal) show time-reversal symmetry breaking (TRSB) in the superconducting state, while TRS is preserved in the isostructural Mg10_{10}Ir19_{19}B16_{16} or Nb0.5_{0.5}Os0.5_{0.5}, the Re1x_{1-x}Mox_x alloys represent another suitable system for studying the interplay of space-inversion, gauge, and time-reversal symmetries in future experiments expected to probe TRSB in the ReTT family.Comment: 8 pages, 7 figures, accepted for publication on Physical Review Material

    Observation of insulator-metal transition in EuNiO3_{3} under high pressure

    Full text link
    The charge transfer antiferromagnetic (TN_{N} =220 K) insulator EuNiO3_{3} undergoes, at ambient pressure, a temperature-induced metal insulator MI transition at TMI_{MI}=463 K. We have investigated the effect of pressure (up to p~20 GPa) on the electronic, magnetic and structural properties of EuNiO3_{3} using electrical resistance measurements, {151}^Eu nuclear resonance scattering of synchrotron radiation and x-ray diffraction, respectively. With increasing pressure we find at pc_{c} =5.8 GPa a transition from the insulating state to a metallic state, while the orthorhombic structure remains unchanged up to 20 GPa. The results are explained in terms of a gradual increase of the electronic bandwidth with increasing pressure, which results in a closing of the charge transfer gap. It is further shown that the pressure-induced metallic state exhibits magnetic order with a lowervalue of TN_{N} (TN_{N} ~120 K at 9.4 GPa) which disappears between 9.4 and 14.4 GPa.Comment: 10 pages, 3 figure

    Nodeless superconductivity in the noncentrosymmetric Mo3_3Rh2_2N superconductor: a μ\muSR study

    Full text link
    The noncentrosymmetric superconductor Mo3_3Rh2_2N, with Tc=4.6T_c = 4.6 K, adopts a β\beta-Mn-type structure (space group PP41_132), similar to that of Mo3_3Al2_2C. Its bulk superconductivity was characterized by magnetization and heat-capacity measurements, while its microscopic electronic properties were investigated by means of muon-spin rotation and relaxation (μ\muSR). The low-temperature superfluid density, measured via transverse-field (TF)-μ\muSR, evidences a fully-gapped superconducting state with Δ0=1.73kBTc\Delta_0 = 1.73 k_\mathrm{B}T_c, very close to 1.76 kBTck_\mathrm{B}T_c - the BCS gap value for the weak coupling case, and a magnetic penetration depth λ0=586\lambda_0 = 586 nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined by zero-field (ZF)-μ\muSR measurements, hints at a preserved time-reversal symmetry in the superconducting state. Both TF-and ZF-μ\muSR results evidence a spin-singlet pairing in Mo3_3Rh2_2N.Comment: 5 figures and 5 pages. Accepted for publication as a Rapid Communication in Phys. Rev.

    Room-temperature structural phase transition in the quasi-2D spin-1/2 Heisenberg antiferromagnet Cu(pz)2_2(ClO4_4)2_2

    Full text link
    Cu(pz)2_2(ClO4_4)2_2 (with pz denoting pyrazine C4_4H4_4N2_2) is a two-dimensional spin-1/2 square-lattice antiferromagnet with TNT_{\mathrm{N}} = 4.24 K. Due to a persisting focus on the low-temperature magnetic properties, its room-temperature structural and physical properties caught no attention up to now. Here we report a study of the structural features of Cu(pz)2_2(ClO4_4)2_2 in the paramagnetic phase, up to 330 K. By employing magnetization, specific heat, 35^{35}Cl nuclear magnetic resonance, and neutron diffraction measurements, we provide evidence of a second-order phase transition at TT^{\star} = 294 K, not reported before. The absence of a magnetic ordering across TT^{\star} in the magnetization data, yet the presence of a sizable anomaly in the specific heat, suggest a structural order-to-disorder type transition. NMR and neutron-diffraction data corroborate our conjecture, by revealing subtle angular distortions of the pyrazine rings and of ClO4^-_4 counteranion tetrahedra, shown to adopt a configuration of higher symmetry above the transition temperature.Comment: 10 pages, 12 figure

    Spin and charge ordering in self-doped Mott insulators

    Full text link
    We have investigated possible spin and charge ordered states in 3d transition-metal oxides with small or negative charge-transfer energy, which can be regarded as self-doped Mott insulators, using Hartree-Fock calculations on d-p-type lattice models. It was found that an antiferromagnetic state with charge ordering in oxygen 2p orbitals is favored for relatively large charge-transfer energy and may be relevant for PrNiO3_3 and NdNiO3_3. On the other hand, an antiferromagnetic state with charge ordering in transition-metal 3dd orbitals tends to be stable for highly negative charge-transfer energy and can be stabilized by the breathing-type lattice distortion; this is probably realized in YNiO3_3.Comment: 4 pages, 4 figure
    corecore