15 research outputs found

    Stimulus contrast information modulates sensorimotor decision making in goldfish

    Get PDF
    Animal survival relies on environmental information gathered by their sensory systems. We found that contrast information of a looming stimulus biases the type of defensive behavior that goldfish (Carassius auratus) perform. Low-contrast looms only evoke subtle alarm reactions whose probability is independent of contrast. As looming contrast increases, the probability of eliciting a fast escape maneuver, the C-start response, increases dramatically. Contrast information also modulates the decision of when to escape. Although response latency is known to depend on looming retinal size, we found that contrast acts as an additional parameter influencing this decision. When presenting progressively higher contrast stimuli, animals need shorter periods of stimulus processing to initiate the response. Our results comply with the notion that the decision to escape is a flexible process initiated with stimulus detection and followed by assessment of the perceived risk posed by the stimulus. Highly disruptive behaviors as the C-start are only observed when a multifactorial threshold that includes stimulus contrast is surpassed.Fil: Otero Coronel, Santiago. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Martorell, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Berón de Astrada, Martín. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Binocular neuronal processing of object motion in an arthropod

    Get PDF
    Animals use binocular information to guide many behaviors. In highly visual arthropods, complex binocular computations involved in processing panoramic optic flow generated during self-motion occur in the optic neuropils. However, the extent to which binocular processing of object motion occurs in these neuropils remains unknown. We investigated this in a crab, where the distance between the eyes and the extensive overlapping of their visual fields advocate for the use of binocular processing. By performing in vivo intracellular recordings from the lobula (third optic neuropil) of male crabs, we assessed responses of object-motion-sensitive neurons to ipsilateral or contralateral moving objects under binocular and monocular conditions. Most recorded neurons responded to stimuli seen independently with either eye, proving that each lobula receives profuse visual information from both eyes. The contribution of each eye to the binocular response varies among neurons, from those receiving comparable inputs from both eyes to those with mainly ipsilateral or contralateral components, some including contralateral inhibition. Electrophysiological profiles indicated that a similar number of neurons were recorded from their input or their output side. In monocular conditions, the first group showed shorter response delays to ipsilateral than to contralateral stimulation, whereas the second group showed the opposite. These results fit well with neurons conveying centripetal and centrifugal information from and toward the lobula, respectively. Intracellular and massive stainings provided anatomical support for this and for direct connections between the two lobulae, but simultaneous recordings failed to reveal such connections. Simplified model circuits of interocular connections are discussed.Fil: Scarano, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Sztarker, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Berón de Astrada, Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentin

    Morphological and functional characterization of motion sensitive neurons involved in visual behaviors of the crab Chasmagnathus

    Get PDF
    Los comportamientos que se realizan en ambientes visualmente complejos requieren que los artrópodos, como los vertebrados, extraigan información de la escena visual. Experimentos comportamentales sugieren que principios similares a los que operan en mamíferos subyacen al análisis de patrones visuales en artrópodos (Mizunami et al., 1998; Srinivasan et al., 1993). Registros electrofisiológicos revelan la existencia de neuronas de artrópodos funcionalmente similares a las de la corteza visual de mamíferos (Glantz, 1998; O'Carroll, 1993). Insectos y crustáceos han demostrado su extraordinaria capacidad visual para categorizar y memorizar objetos. No obstante, la identificación de neuronas involucradas en esas capacidades es casi desconocida. En el cangrejo Chasmagnathus, se ha identificado un grupo de neuronas sensibles al movimiento que participa en la detección visual de objetos y en memorias de largo término. Sin embargo, tempranamente se reconoció que el grupo estaba constituído por varias clases distintas de neuronas cuya identificación estaba pendiente. En el transcurso de esta tesis, registramos, en el animal intacto y no anestesiado, respuestas de neuronas LG a un amplio rango de estímulos visuales presentados en distintas partes del campo visual del animal. Esta caracterización fisiológica fue seguida por marcación intracelular, lo que permitió la comparación de los rasgos anatómicos y funcionales de cada célula. Todas las LG presentan extensas arborizaciones en la lóbula y poseen axones que proyectan hacia el cerebro medio. Funcionalmente, las LG demostraron ser más sensibles al movimiento de objetos que a desplazamientos de todo el panorama. No obstante estas similitudes, claras diferencias morfológicas y fisiológicas nos permitieron identificar cuatro tipos distintos de LG. Asimismo determinamos que muchas de ellas se hayan acopladas eléctricamente a otros tipos de LG y avanzamos en la determinación de sus áreas de proyección. El conjunto de los datos nos permite proponer una función para cada tipo de LG así como establecer las bases anatómico-fisiológicas que permitirán analizar el rol de cada tipo de LG en la ejecución de comportamientos guiados por la visión en el cangrejo

    ON THE GENUS EILICA (ARANEAE, GNAPHOSIDAE) FROM ARGENTINA

    No full text
    Volume: 29Start Page: 423End Page: 42

    The Mauthner-cell circuit of fish as a model system for startle plasticity

    Get PDF
    The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.Fil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Preuss, Thomas. City University Of New York. Hunter College; Estados Unido

    A computational model on the goldfish Mauthner cell.

    Get PDF
    Integration of multimodal information is of key importance to generate adaptive behavior. However, our understanding of how multimodal integration is implemented at the dendritic level is still scant. We address this question in the Mauthner-cell (M-cell), the “decision making element” [1] of the startle escape network of goldfish. The M-cell has two main aspiny dendritic branches arising from the soma, the lateral dendrite and the ventral dendrite, where the former receives auditory input [2] and the latter input from the visual system [3]. Both dendrites are amenable to intracellular recording in vivo, which offers the opportunity to study whether the propagation of auditory and visual signals is similar, or if different filtering properties are implemented in each dendrite. To describe the cell behavior, we use a Hodgkin-Huxley type of model [4, 5] for the spike initiation zone, combined with a realistic dendritic morphology reconstructed from intracellular staining images. We fit the model parameters to intracellular recordings, where the cell is stimulated with square and ramp pulses injected at the soma, and responses are measured at a fixed location in the proximal lateral dendrite. The obtained model provides a simulation framework for studying the signal propagation along the cell dendrites and soma. Simulations of impulse decay along passive dendrites in orthodromic and antidromic directions are compared with the corresponding experimental observations. In the orthodromic direction, the model correctly predicts that the spatial decay is larger on the ventral than on the lateral dendrite, due to the differences in the dendrite diameters. However, recordings of signals propagating antidromically in the ventral dendrite show smaller spatial decay than those in the lateral dendrite, opposite to the model predictions. Our preliminary results suggest that passive dendrites alone are not enough to explain the experimentally observed spatial decay in the two different directions. By contrast, we found that the application of voltage-gated ion channels to the model of the ventral dendrite, even with very small maximal conductances, could lead to correctly reproducing the observed signal propagation properties. Although traditionally the soma and dendrites of the M-cell are considered to be purely passive, voltage-dependent conductances have been observed on the lateral dendrite [6]. To make sure the results are not an artifact of a certain complex dendrite morphology, we confirm our findings using an approximative, simple dendritic morphology. Our results highlight 1) the importance of including realistic morphology on modeling studies of neuron behavior; 2) the possibility of specialization of the dendritic arbors within the same neuron depending on the input they receive; and 3) the possibility of computationally examining the existence of active conductances in neurons that do not produce dendritic spikes. The implications of the existence of active dendritic compartments for the cell functioning are discussed in the context of the integration capabilities of single neurons.Fil: Mäki Marttunen, Tuomo. Universidad de Tampere; Finlandia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin

    How visual space maps in the optic neuropils of a crab

    Get PDF
    The Decapoda is the largest order of crustaceans, some 10,000 species having been described to date. The order includes shrimps, lobsters, crayfishes, and crabs. Most of these are highly visual animals that display complex visually guided behaviors and, consequently, large areas of their nervous systems are dedicated to visual processing. However, our knowledge of the organization and functioning of the visual nervous system of these animals is still limited. Beneath the retina lie three serially arranged optic neuropils connected by two chiasmata. Here, we apply dye tracers in different areas of the retina or the optic neuropils to investigate the organization of visual space maps in the optic neuropils of the brachyuran crab Chasmagnathus granulatus. Our results reveal the way in which the visual space is represented in the three main optic neuropils of a decapod. We show that the crabs' optic chiasmata are oriented perpendicular to each other, an arrangement that seems to be unique among malacostracans. Crabs use retinal position in azimuth and elevation to categorize visual stimuli; for instance, stimuli moving above or below the horizon are interpreted as predators or conspecifics, respectively. The retinotopic maps revealed in the present study create the possibility of relating particular regions of the optic neuropils with distinct behavioral responses elicited by stimuli occurring in different regions of the visual field.Fil: Berón de Astrada, Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Differential processing in modality-specific Mauthner cell dendrites

    No full text
    Key points: The present study examines dendritic integrative processes that occur in many central neurons but have been challenging to study in vivo in the vertebrate brain. The Mauthner cell of goldfish receives auditory and visual information via two separate dendrites, providing a privileged scenario for in vivo examination of dendritic integration. The results show differential attenuation properties in the Mauthner cell dendrites arising at least partly from differences in cable properties and the nonlinear behaviour of the respective dendritic membranes. In addition to distinct modality-dependent membrane specialization in neighbouring dendrites of the Mauthner cell, we report cross-modal dendritic interactions via backpropagating postsynaptic potentials. Broadly, the results of the present study provide an exceptional example for the processing power of single neurons. Abstract: Animals process multimodal information for adaptive behavioural decisions. In fish, evasion of a diving bird that breaks the water surface depends on integrating visual and auditory stimuli with very different characteristics. How do neurons process such differential sensory inputs at the dendritic level? For that, we studied the Mauthner cells (M-cells) in the goldfish startle circuit, which receive visual and auditory inputs via two separate dendrites, both accessible for in vivo recordings. We investigated whether electrophysiological membrane properties and dendrite morphology, studied in vivo, play a role in selective sensory processing in the M-cell. The results obtained show that anatomical and electrophysiological differences between the dendrites combine to produce stronger attenuation of visually evoked postsynaptic potentials (PSPs) than to auditory evoked PSPs. Interestingly, our recordings showed also cross-modal dendritic interaction because auditory evoked PSPs invade the ventral dendrite (VD), as well as the opposite where visual PSPs invade the lateral dendrite (LD). However, these interactions were asymmetrical, with auditory PSPs being more prominent in the VD than visual PSPs in the LD. Modelling experiments imply that this asymmetry is caused by active conductances expressed in the proximal segments of the VD. The results obtained in the present study suggest modality-dependent membrane specialization in M-cell dendrites suited for processing stimuli of different time domains and, more broadly, provide a compelling example of information processing in single neurons.Fil: Medan, Violeta. City University of New York; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Mäki Marttunen, Tuomo. Universidad de Tampere; Finlandia. University of Oslo; NoruegaFil: Sztarker, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Preuss, Thomas. City University of New York; Estados Unido
    corecore