276 research outputs found

    Coupled Mg/Ca and Clumped Isotope Measurements Indicate Lack of Substantial Mixed Layer Cooling in the Western Pacific Warm Pool During the Last ∼5 Million Years

    Get PDF
    The Indo-Pacific Warm Pool (IPWP) plays a crucial role in influencing climate dynamics both in the tropics and globally. Yet, there is an ongoing controversy concerning the evolution of surface temperatures in the IPWP since the Pliocene, which is fueled by contradictory proxy evidence. Temperature reconstructions using TEX86 indicate a gradual cooling by ∼2°C from the Pliocene to today while Mg/Ca-based studies using planktonic foraminifera do not report any long-term trends. A bias in Mg/Ca records due to seawater chemistry changes has been suggested as an explanation for this proxy mismatch. Here, we present data from two independent foraminifera-based temperature proxies, Mg/Ca and clumped isotopes (Δ47), measured on the same samples from IODP Site U1488 in the IPWP. We reconstructed mixed layer and subsurface temperatures and find very good agreement among Mg/Ca and Δ47 when applying a minor correction for changing Mg/Ca ratios of seawater. Diagenetic effects could influence Δ47 but the evaluation of foraminifera preservation at Site U1488 suggests that this effect is unlikely to have masked a long-term trend in the data. While remaining uncertainties prevent us from fully ruling out particular hypotheses, our study adds evidence that mixed layer temperatures likely did not cool substantially, while subsurface temperatures cooled more strongly since the Pliocene. The substantial Pleistocene cooling previously observed in TEX86 data is consistent with this finding when interpreting it as a combined surface and subsurface signal.publishedVersio

    Southern Ocean bottom-water cooling and ice sheet expansion during the middle Miocene climate transition

    Get PDF
    The middle Miocene climate transition (MMCT), around 14 Ma, was associated with a significant climatic shift, but the mechanisms triggering the event remain enigmatic. We present a clumped isotope (Δ47) bottom-water temperature (BWT) record from 16.0 to 12.2 Ma from Ocean Drilling Program (ODP) Site 747 in the Southern Ocean and compare it to existing BWT records from different latitudes. We show that BWTs in the Southern Ocean reached 8–10 ∘C during the Miocene climatic optimum. These high BWT values indicate considerably warmer bottom-water conditions than today. Nonetheless, bottom-water δ18O (calculated from foraminiferal δ18O and Δ47) suggests substantial amounts of land ice throughout the interval of the study. Our dataset further demonstrates that BWTs at Site 747 were variable with an overall cooling trend across the MMCT. Notably, a cooling of around 3–5 ∘C preceded the stepped main increase in benthic δ18O, interpreted as global ice volume expansion, and appears to have been followed by a transient bottom-water warming starting during or slightly after the main ice volume increase. We speculate that a regional freshening of the upper water column at this time may have increased stratification and reduced bottom-water heat loss to the atmosphere, counteracting global cooling in the bottom waters of the Southern Ocean and possibly even at larger scales. Feedbacks required for substantial ice growth and/or tectonic processes may have contributed to the observed decoupling of global ice volume and Southern Ocean BWT.publishedVersio

    Sensitivity of clumped isotope temperatures in fossil benthic and planktic foraminifera to diagenetic alteration

    Get PDF
    Applying the clumped isotope (Δ47) thermometer to foraminifer microfossils offers the potential to significantly improve paleoclimate reconstructions, owing to its insensitivity to the isotopic composition of seawater (unlike traditional oxygen isotope (δ18O) analyses). However, the extent to which primary Δ47 signatures of foraminiferal calcites can be overprinted during diagenesis is not well known. Here, we present Δ47 data as well as high-resolution (∼10 kyr) δ18O and δ13C middle Eocene time series, measured on benthic and planktic foraminifera from ODP/IODP Sites 1408, 1409, 1410, 1050, 1260 and 1263 in the Atlantic Ocean. The sites examined span various oceanographic regimes, including the western tropical to mid-latitude North Atlantic, and the eastern mid-latitude South Atlantic. Comparing data from contemporaneous foraminifera with different preservation states, we test the effects of diagenetic alteration on paleotemperature reconstructions for the deep and surface ocean. We find that overall, primary Δ47 signatures appear similarly sensitive to diagenetic overprinting as δ18O, with differences in sensitivity depending on pore fluid chemistry and the amount of secondary calcite. Where planktic foraminifera are significantly altered, sea surface temperatures derived from Δ47 and δ18O values are biased towards cool temperatures. In comparison, Δ47 and δ18O values of benthic and well preserved planktic foraminifera are less affected by diagenesis and thus likely to yield robust foraminiferal calcification temperatures. With independent estimates of diagenetic calcite fractions, secondary overprints could be corrected for, using end-member modeling and Δ47-based temperatures from benthic foraminifera

    Stable Biological Production in the Eastern Equatorial Pacific Across the Plio-Pleistocene Transition (∼3.35–2.0 Ma)

    Get PDF
    Upwelling within the Eastern Equatorial Pacific (EEP) Ocean is a key factor for the Earth's climate because it supports >10% of the present-day biological production. The dynamics of upwelling in the EEP across the Plio-Pleistocene transition—an interval particularly relevant for understanding near-future warming due to Anthropocene-like atmospheric carbon-dioxide levels—have been intensively studied for the region east of the East Pacific Rise. In contrast, changes of the equatorial upwelling regime in the open Pacific Ocean west of this oceanographic barrier have received markedly less attention. We therefore provide new proxy records from Ocean Drilling Program Site 849 located within the EEP open-ocean upwelling regime. Our target interval (∼3.35–2.0 Ma) covers the Plio-Pleistocene transition characterized by the intensification of Northern Hemisphere Glaciation (iNHG). We use benthic δ18O values to generate a new, high-resolution age model for Site 849, and sand-accumulation rates together with benthic δ13C values to evaluate net export production. Although showing temporary substantial glacial-interglacial variations, our records indicate stability in net export production on secular timescales across the iNHG. We suggest the following processes to have controlled the long-term evolution of primary productivity at Site 849. First, nutrient export from the high latitudes to the EEP; second, a successive shoaling of the Pacific nutricline during the studied interval; and third, a simultaneous reduction in dust-borne iron input.publishedVersio

    Solid State Physics

    Get PDF
    Contains reports on five research projects

    Multi-proxy speleothem-based reconstruction of mid-MIS 3 climate in South Africa

    Get PDF
    The southern coast of South Africa displays a highly dynamical climate as it is at the convergence of the Atlantic and Indian oceans, and it is located near the subtropical/temperate zone boundary with seasonal influence of easterlies and westerlies. The region hosts some key archeological sites with records of significant cognitive, technological and social developments. Reconstructions of the state and variability of past climate and environmental conditions around sites of archeological significance can provide crucial context for understanding the evolution of early humans. Here we present a short but high-resolution record of hydroclimate and temperature in South Africa. Our reconstructions are based on trace elements, calcite and fluid inclusion stable isotopes, as well as fluid inclusion microthermometry, from a speleothem collected in Bloukrantz cave, in the De Hoop Nature Reserve in the southern Cape region of South Africa. Our record covers the time period from 48.3 to 45.2 ka during marine isotope stage 3. Both δ18Oc and δ13Cc show strong variability and covary with Sr/Ca. This correlation suggests that the control on these proxies originates from internal cave processes such as prior carbonate precipitation, which we infer to be related to precipitation amount. The hydroclimate indicators furthermore suggest a shift towards overall drier conditions after 46 ka, coincident with cooling in Antarctica and drier conditions in the eastern part of South Africa corresponding to the summer rainfall zone (SRZ). Fluid inclusion-based temperature reconstructions show good agreement between the oxygen isotope and microthermometry methods, and results from the latter display little variation throughout the record, with reconstructed temperatures close to the present-day cave temperature of 17.5 ∘C. Overall, the BL3 speleothem record thus suggests relatively stable temperature from 48.3 to 45.2 ka, whereas precipitation was variable with marked drier episodes on sub-millennial timescales.</p

    Solid State Physics

    Get PDF
    Contains reports on three research projects

    Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean

    Get PDF
    Fixed nitrogen (N) is a limiting algal nutrient in the low latitude ocean, and the oceanic N inventory has been suggested to increase during ice ages so as to lower atmospheric CO_2. In organic matter within planktonic foraminifera shells in Caribbean Sea sediments, the ^(15)N/^(14)N from the last ice age is higher than that from the current interglacial, indicating higher nitrate ^(15)N/^(14)N in the Caribbean thermocline. This and species-specific differences are best explained by less N fixation in the Atlantic during the last ice age. The fixation decrease was most likely a response to a known ice age reduction in ocean N loss, and it would have worked to balance the ocean N budget and to curb ice age-to-interglacial change in the N inventory

    Transformation of ENSO-related rainwater to dripwater δ^(18)O variability by vadose water mixing

    Get PDF
    Speleothem oxygen isotopes (δ^(18)O) are often used to reconstruct past rainfall δ^(18)O variability, and thereby hydroclimate changes, in many regions of the world. However, poor constraints on the karst hydrological processes that transform rainfall signals into cave dripwater add significant uncertainty to interpretations of speleothem-based reconstructions. Here we present several 6.5 year, biweekly dripwater δ^(18)O time series from northern Borneo and compare them to local rainfall δ^(18)O variability. We demonstrate that vadose water mixing is the primary rainfall-to-dripwater transformation process at our site, where dripwater δ^(18)O reflects amount-weighted rainfall δ^(18)O integrated over the previous 3–10 months. We document large interannual dripwater δ^(18)O variability related to the El Niño–Southern Oscillation (ENSO), with amplitudes inversely correlated to dripwater residence times. According to a simple stalagmite forward model, asymmetrical ENSO extremes produce significant offsets in stalagmite δ^(18)O time series given different dripwater residence times. Our study highlights the utility of generating multiyear, paired time series of rainfall and dripwater δ^(18)O to aid interpretations of stalagmite δ^(18)O reconstructions
    corecore