7 research outputs found

    Using atmospheric model output to simulate the meteorological tsunami response to Tropical Storm Helene (2000)

    Get PDF
    [1] In the fall of both 1999 and 2000, unexpected “rapid tides” occurred along the coast of the Avalon Peninsula of Newfoundland. These rapid tides have been linked to the passing of Tropical Storm Jose (1999) and Tropical Storm Helene (2000) over the Grand Banks. Here we examine the dynamic ocean response to Tropical Storm Helene (2000) using a barotropic shallow water ocean model forced by atmospheric pressure and surface winds derived from a simulation of Helene using a dynamical model of the atmosphere. The ocean model is able to capture the main features of the observed response at the coast of Newfoundland as seen in the available tide gauge data. Results show that the simulated sea level response at the coast is driven by a combination of wind stress and atmospheric pressure forcing, the former generally dominating. An exception is Conception Bay, Newfoundland, where the response is captured mainly by atmospheric pressure forcing. Offshore near the edge of the Grand Banks, atmospheric pressure and wind stress forcing are equally important. The wind-forced response depends on the divergence of the surface wind stress and hence on the structure of the storm in the atmospheric model simulation. Sensitivity studies show the importance of having a small time interval (on the order of minutes) at which the atmospheric forcing is supplied to the ocean model and show the importance of the location of the storm track

    Marketing services in company FERENČÍK Ltd.

    Get PDF
    The thesis in the first part deals with marketing and marketing mix of services. Then briefly explains the procedures for creating a SWOT analysis. The first part of theoretical information ends with the marketing communication mix. In the second part there are theoretical information used for analysing the company Ferenčík Ltd. The thesis made a SWOT analysis focused on communication with customers. After the analysis there are made the proposals for improving communication with customers

    Reconstructing global overturning from meridional density gradients

    No full text
    Despite the complexity of the global ocean system, numerous attempts have been made to scale the strength of the meridional overturning circulation (MOC), principally in the North Atlantic, with large-scale, basin-wide hydrographic properties. In particular, various approaches to scaling the MOC with meridional density gradients have been proposed, but the success of these has only been demonstrated under limited conditions. Here we present a scaling relationship linking overturning to twice vertically-integrated meridional density gradients via the hydrostatic equation and a “rotated” form of the geostrophic equation. This provides a meridional overturning streamfunction as a function of depth for each basin. Using a series of periodically forced experiments in a global, coarse resolution configuration of the general circulation model NEMO, we explore the timescales over which this scaling is temporally valid. We find that the scaling holds well in the upper Atlantic cell (at 1000 m) for multi-decadal (and longer) timescales, accurately reconstructing the relative magnitude of the response for different frequencies and explaining over 85 % of overturning variance on timescales of 64–2048 years. Despite the highly nonlinear response of the Antarctic cell in the abyssal Atlantic, between 76 and 94 % of the observed variability at 4000 m is reconstructed on timescales of 32 years (and longer). The scaling law is also applied in the Indo-Pacific. This analysis is extended to a higher resolution, stochastically forced simulation for which correlations of between 0.79 and 0.99 are obtained with upper Atlantic MOC variability on timescales >25 years. These results indicate that meridional density gradients and overturning are linked via meridional pressure gradients, and that both the strength and structure of the MOC can be reconstructed from hydrography on multi-decadal and longer timescales provided that the link is made in this way

    The importance of deep, basinwide measurements in optimised Atlantic Meridional Overturning Circulation observing arrays

    No full text
    The Atlantic Meridional Overturning Circulation (AMOC) is a key process in the global redistribution of heat. The AMOC is defined as the maximum of the overturning stream function, which typically occurs near 30°N in the North Atlantic. The RAPID mooring array has provided full-depth, basinwide, continuous estimates of this quantity since 2004. Motivated by both the need to deliver near real-time data and optimization of the array to reduce costs, we consider alternative configurations of the mooring array. Results suggest that the variability observed since 2004 could be reproduced by a single tall mooring on the western boundary and a mooring to 1500 m on the eastern boundary. We consider the potential future evolution of the AMOC in two generations of the Hadley Centre climate models and a suite of additional CMIP5 models. The modeling studies show that deep, basinwide measurements are essential to capture correctly the future decline of the AMOC. We conclude that, while a reduced array could be useful for estimates of the AMOC on subseasonal to decadal time scales as part of a near real-time data delivery system, extreme caution must be applied to avoid the potential misinterpretation or absence of a climate time scale AMOC decline that is a key motivation for the maintenance of these observations

    Thermomechanical processing of titanium, zirconium, magnesium, and zinc in the hcp structure

    No full text
    corecore