847 research outputs found

    Analysis of surface parametrizations for modern photometric stereo modeling

    Get PDF
    Tridimensional shape recovery based on Photometric Stereo (PS) recently received a strong improvement due to new mathematical models based on partial differential irradiance equation ratios. This modern approach to PS faces more realistic physical effects among which light attenuation and radial light propagation from a point light source. Since the approximation of the surface is performed with single step method, accurate reconstruction is prevented by sensitiveness to noise. In this paper we analyse a well-known parametrization of the tridimensional surface extending it on any auxiliary convex projection functions. Experiments on synthetic data show preliminary results where more accurate reconstruction can be achieved using more suitable parametrization specially in case of noisy input images

    Unifying diffuse and specular reflections for the photometric stereo problem

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/WACV.2016.7477643After thirty years of researching, the photometric stereo technique for 3D shape recovery still does not provide reliable results if it is not constrained into very well-controlled scenarios. In fact, dealing with realistic materials and lightings yields a non-linear bidirectional reflectance distribution function which is primarily difficult to parametrize and then arduous to solve. With the aim to let the photometric stereo approach face more realistic assumptions, in this work we firstly introduce a unified irradiance equation describing both diffuse and specular reflection components in a general lighting setting. After that, we define a new equation we call unifying due to its basic features modeling the photometric stereo problem for heterogeneous materials. It is provided by making the ratio of irradiance equations holding both diffuse and specular reflections as well as non-linear light propagation features simultaneously. Performing a wide range of experiments, we show that this new approach overcomes state-of-the-art since it leads to a system of unifying equations which can be solved in a very robust manner using an efficient variational approach.Experimental setups were provided by Toulouse Tech Transfer, and this collaboration was funded by CNRS GdR 2286 (MIA)

    Fractional-order diffusion for image reconstruction

    Get PDF
    International audienceIn this paper, a general framework based on fractional-order partial differential equations allows to solve image reconstruction problems. The algorithm presented in this work combines two previous notions: a fractional derivative implementation by Discrete Fourier Transform and the edge detection by topological gradient. The purpose of the paper is to extend some existing results in image denoising problem with fractional-order diffusion equations and presents new results in image inpainting. The results emphasize the importance of particular fractional-orders

    A CNN Based Approach for the Point-Light Photometric Stereo Problem

    Full text link
    Reconstructing the 3D shape of an object using several images under different light sources is a very challenging task, especially when realistic assumptions such as light propagation and attenuation, perspective viewing geometry and specular light reflection are considered. Many of works tackling Photometric Stereo (PS) problems often relax most of the aforementioned assumptions. Especially they ignore specular reflection and global illumination effects. In this work, we propose a CNN-based approach capable of handling these realistic assumptions by leveraging recent improvements of deep neural networks for far-field Photometric Stereo and adapt them to the point light setup. We achieve this by employing an iterative procedure of point-light PS for shape estimation which has two main steps. Firstly we train a per-pixel CNN to predict surface normals from reflectance samples. Secondly, we compute the depth by integrating the normal field in order to iteratively estimate light directions and attenuation which is used to compensate the input images to compute reflectance samples for the next iteration. Our approach sigificantly outperforms the state-of-the-art on the DiLiGenT real world dataset. Furthermore, in order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first real-world 'dataset for near-fieLd point light soUrCe photomEtric Stereo' of 14 objects of different materials were the effects of point light sources and perspective viewing are a lot more significant. Our approach also outperforms the competition on this dataset as well. Data and test code are available at the project page.Comment: arXiv admin note: text overlap with arXiv:2009.0579

    A PDE approach to Shape from Shading via Photometric Stereo

    Get PDF
    We present a new analytic and numerical approach to the shape from shading using photometric stereo technique. That is, we solve the problem to find the 3D surface of an object starting from its several 2D pictures taken from the same point of view, but changing, for every image, the direction of the light source

    Unbiased Photometric Stereo for Colored Surfaces: A Variational Approach

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by IEEE.3D shape recovery using photometric stereo (PS) gained increasing attention in the computer vision community in the last three decades due to its ability to recover the thinnest geometric structures. Yet, the reliability of PS for color images is difficult to guarantee, because existing methods are usually formulated as the sequential estimation of the colored albedos, the normals and the depth. Hence, the overall reliability depends on that of each subtask. In this work we propose a new formulation of color photometric stereo, based on image ratios, that makes the technique independent from the albedos. This allows the unbiased 3D- reconstruction of colored surfaces in a single step, by solving a system of linear PDEs using a variational approach
    • …
    corecore