301 research outputs found

    Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone

    Get PDF
    BACKGROUND: Few new compounds are available for relapsed osteosarcoma. We retrospectively evaluated the activity of gemcitabine (G) plus docetaxel (D) in patients with relapsed high-grade osteosarcoma and high-grade spindle cell sarcoma of bone (HGS). METHODS: Patients receiving G 900 mg/m(2) d 1, 8; D 75 mg/m(2) d 8, every 21 days were eligible. Primary end-point: progression-free survival (PFS) at 4 months; secondary end-point: overall survival (OS) and response rate. RESULTS: Fifty-one patients were included, with a median age of 17 years (8–71), 26 (51 %) were pediatric patients. GD line of treatment: 2nd in 14 patients, ≥3rd in 37. 25 (49 %) patients had metastases limited to lungs, 26 (51 %) multiple sites. Histology: 40 (78 %) osteosarcoma, 11 (22 %) HGS. Eight (16 %) patients achieved surgical complete response (sCR2) after GD. Four-month PFS rate was 46 %, and significantly better for patients with ECOG 0 (ECOG 0: 54 % vs ECOG 1: 43 % vs ECOG 2: 0 %; p = 0.003), for patients undergoing metastasectomy after GD (sCR2 75 % vs no-sCR2 40 %, p = 0.02) and for osteosarcoma (osteosarcoma 56 % vs HGS 18 %; p = 0.05), with no differences according to age, line of treatment, and pattern of metastases. Forty-six cases had RECIST measurable disease: 6 (13 %) patients had a partial response (PR), 20 (43 %) had stable disease (SD) and 20 (43 %) had progressive disease (PD). The 1-year OS was 30 %: 67 % for PR, 54 % for SD and 20 % for PD (p = 0.005). CONCLUSIONS: GD is an active treatment for relapsed high-grade osteosarcoma, especially for ECOG 0 patients, and should be included in the therapeutic armamentarium of metastatic osteosarcoma

    Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients

    Get PDF
    X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48− KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48− targets, such as mature DCs. Self-iNKR− NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients’ immune defect

    Outcome of children with acute leukemia given HLA-haploidentical HSCT after ab T-cell and B-cell depletion

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-haploidentical relative (haplo-HSCT) is a suitable option for children with acute leukemia (AL) either relapsed or at high-risk of treatment failure. We developed a novel method of graft manipulation based on negative depletion of ab T and B cells and conducted a prospective trial evaluating the outcome of children with AL transplanted with this approach. Eighty AL children, transplanted between September 2011 and September 2014, were enrolled in the trial. All children were given a fully myeloablative preparative regimen. Anti–T-lymphocyte globulin from day 25 to 23 was used for preventing graft rejection and graft-versus-host disease (GVHD); no patient received any posttransplantation GVHD prophylaxis. Two children experienced primary graft failure. The cumulative incidence of skin-only, grade 1-2 acute GVHD was 30%; no patient developed extensive chronic GVHD. Four patients died, the cumulative incidence of nonrelapse mortality being 5%, whereas 19 relapsed, resulting in a 24% cumulative incidence of relapse. With a median follow-up of 46 months for surviving patients, the 5-year probability of chronic GVHD-free, relapse-free survival (GRFS) is 71%. Total body irradiation–containing preparative regimen was the only variable favorably influencing relapse incidence and GRFS. The outcomes of these 80 patients are comparable to those of 41 and 51 children given transplantation from an HLA-identical sibling or a 10/10 allelic-matched unrelated donor in the same period. These data indicate that haplo-HSCT after ab T- and B-cell depletion represents a competitive alternative for children with AL in need of urgent allograft. This trial was registered at www.clinicaltrials.gov as #NCT01810120

    Solid-state synthesis of mixed trihalides via reversible absorption of dihalogens by non porous onium salts

    Get PDF
    1,6-Bis(trimethylammonium) hexane bis(trihalides) and mixed bis(trihalides) have been synthesized by treating the corresponding dihydrated halides with molecular dihalogens under gas-solid and solution conditions. Despite the starting halides being non-porous, the trihalide syntheses occur homogeneously, in quantitative yields, and reversibly. In all cases halogen bond prevails over hydrogen bond, dihalogens substitute for the hydration water of starting halide anions and trihalides are formed. The stability of the obtained trihalides is mainly due to cooperative halogen bond and cation templation effect. Hexamethonium halides are proven effective solids for the clathration and storage of molecular dihalogens. While the starting salts are not isostructural, all the formed trihalides and mixed trihalides are isostructural

    Favorable outcome of SARS-CoV-2 infection in pediatric hematology oncology patients during the second and third pandemic waves in Italy: a multicenter analysis from the Infectious Diseases Working Group of the Associazione Italiana di Ematologia e Oncologia Pediatrica (AIEOP)

    Get PDF
    COVID-19 has a mild clinical course with low mortality rate in general pediatric population, while variable outcomes have been described in children with cancer. Infectious diseases working party of the AIEOP collected data on the clinical characteristics and outcomes of SARS-CoV-2 infections in pediatric oncology/hematology patients from April 2020 to May 2021, including the second and the third waves of the pandemic in Italy. Factors potentially associated with moderate, severe, or critical COVID-19 were analyzed. Of the 153 SARS-Cov2 infections recorded, 100 were asymptomatic and 53 symptomatic. The course of COVID-19 was mild in 41, moderate in 2, severe in 5, and critical in 5 children. A total of 40.5% of patients were hospitalized, ten requiring oxygen support and 5 admitted to the intensive care unit. Antibiotics and steroids were the most used therapies. No patient died due to SARS-CoV-2 infection. Infections occurring early (< 60 days) after the diagnosis of the underlying disease or after SCT were associated to moderate, severe, and critical disease compared to infections occurring late (> 60 days) or during maintenance therapy. In the patients on active chemotherapy, 59% withdrew the treatment for a median of 15 days. SARS-CoV-2 presented a favorable outcome in children with cancer in Italy during the pandemic. Modification of therapy represents a major concern in this population. Our findings suggest considering regular chemotherapy continuation, particularly in patients on maintenance therapy or infected late after the diagnosis

    Consensus on COVID‐19 Vaccination in Pediatric Oncohematological Patients, on Behalf of Infectious Working Group of Italian Association of Pediatric Hematology Oncology

    Get PDF
    Vaccines represent the best tool to prevent the severity course and fatal consequences of the pandemic by the new Coronavirus 2019 infection (SARS‐CoV‐2). Considering the limited data on vaccination of pediatric oncohematological patients, we developed a Consensus document to support the Italian pediatric hematological oncological (AIEOP) centers in a scientifically correct communication with families and patients and to promote vaccination. The topics of the Consensus were: SARS‐CoV‐2 infection and disease (COVID‐19) in the pediatric subjects; COVID‐19 vaccines (type, schedule); who and when to vaccinate; contraindications and risk of serious adverse events; rare adverse events; third dose and vaccination after COVID‐19; and other general prevention measures. Using the Delphi methodology for Consensus, 21 statements and their corresponding rationale were elaborated and discussed with the representatives of 31 centers, followed by voting. A high grade of Consensus was obtained on topics such as the potential risk of severe COVID‐19 outcome in pediatric oncohematological patients, the need for vaccination as a preventative measure, the type, schedule and booster dose of vaccine, the eligibility of the patients for vaccination, and the timing, definition, and management of contraindications and serious adverse events, and other general prevention measures. All 21 of the statements were approved. This consensus document highlights that children and adolescents affected by hematological and oncological diseases are a fragile category. Vaccination plays an important role to prevent COVID‐ 19, to permit the regular administration of chemotherapy or other treatments, to perform control visits and hospital admissions, and to prevent treatment delays

    Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines

    Get PDF
    Present immunoprevention and immunotherapeutic approaches against cancer suffer from the limitation of being not “sterilizing” procedures, as very poor protection against the tumor is obtained. Thus newly conceived anti-tumor vaccination strategies are urgently needed. In this review we will focus on ways to provide optimal MHC class II-restricted tumor antigen presentation to CD4+ T helper cells as a crucial parameter to get optimal and protective adaptive immune response against tumor. Through the description of successful preventive or therapeutic experimental approaches to vaccinate the host against the tumor we will show that optimal activation of MHC class II-restricted tumor specific CD4+ T helper cells can be achieved in various ways. Interestingly, the success in tumor eradication and/or growth arrest generated by classical therapies such as radiotherapy and chemotherapy in some instances can be re-interpreted on the basis of an adaptive immune response induced by providing suitable access of tumor-associated antigens to MHC class II molecules. Therefore, focussing on strategies to generate better and suitable MHC class II–restricted activation of tumor specific CD4+ T helper cells may have an important impact on fighting and defeating cancer
    corecore