1,074 research outputs found

    Synchronization of many nano-mechanical resonators coupled via a common cavity field

    Get PDF
    Using amplitude equations, we show that groups of identical nano-mechanical resonators, interacting with a common mode of a cavity microwave field, synchronize to form a single mechanical mode which couples to the cavity with a strength dependent on the square sum of the individual mechanical-microwave couplings. Classically this system is dominated by periodic behaviour which, when analyzed using amplitude equations, can be shown to exhibit multi-stability. In contrast groups of sufficiently dissimilar nano-mechanical oscillators may lose synchronization and oscillate out of phase at significantly higher amplitudes. Further the method by which synchronization is lost resembles that for large amplitude forcing which is not of the Kuramoto form.Comment: 23 pages, 11 figure

    Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential.

    Get PDF
    We report ZnO nanowire/nanowall growth using a two-step vapour phase transport method on a-plane sapphire. X-ray diffraction and scanning electron microscopy data establish that the nanostructures are vertically well-aligned with c-axis normal to the substrate, and have a very low rocking curve width. Photoluminescence data at low temperatures demonstrate the exceptionally high optical quality of these structures, with intense emission and narrow bound exciton linewidths. We observe a high energy excitonic emission at low temperatures close to the band-edge which we assign to the surface exciton in ZnO at ~ 3.366 eV, the first time this feature has been reported in ZnO nanorod systems. This assignment is consistent with the large surface to volume ratio of the nanowire systems and indicates that this large ratio has a significant effect on the luminescence even at low temperatures. The band-edge intensity decays rapidly with increasing temperature compared to bulk single crystal material, indicating a strong temperature-activated non-radiative mechanism peculiar to the nanostructures. No evidence is seen of the free exciton emission due to exciton delocalisation in the nanostructures with increased temperature, unlike the behaviour in bulk material. The use of such nanostructures in room temperature optoelectronic devices appears to be dependent on the control or elimination of such surface effects

    Partially dentate patient preferences

    Get PDF
    Objective: To identify factors influencing attitudes of partially dentate adults towards dental treatment in Ireland. Background: People are retaining more teeth later in life than ever before. Management of partially dentate older adults will be a major requirement for the future and it is important to determine factors which may influence patients’ attitudes to care. Methods: Subjects: A purposive sample of 22 partially dentate patients was recruited; 12 women and 12 men, ranging in age from 45 to 75 years. Data Collection: Semi-structured individual interviews. Results: Dental patients have increasing expectations in relation to (i) a more sophisticated approach to the management of missing teeth and (ii) their right to actively participate in decision making regarding the management of their tooth loss. There is some evidence of a cohort effect with younger patients (45–64 years) having higher expectations. Conclusions: The evidence of a cohort effect within this study in relation to higher patient expectations indicates that both contemporary and future patients are likely to seek a service based on conservation and restoration of missing teeth by fixed prostheses

    Muscle Glycogen Depletion Following 75-km of Cycling Is Not Linked to Increased Muscle IL-6, IL-8, and MCP-1 mRNA Expression and Protein Content

    Get PDF
    The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N=20) participated in a 75-km cycling time trial (168±26.0 min), with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2±17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5±2.8-, 45.3±7.8-, and 8.25±1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5±14.1%, 347±68.1%, and 148±21.3%, respectively (all, P<0.001). Serum myoglobin and cortisol increased 32.1±3.3 to 242±48.3 mg/mL, and 295±27.6 to 784±63.5 nmol/L, respectively (both P<0.001). Plasma IL-6, IL-8, and MCP-1 increased 0.42±0.07 to 18.5±3.8, 4.07±0.37 to 17.0±1.8, and 96.5±3.7 to 240±21.6 pg/mL, respectively (all P<0.001). Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r=0.462, P=0.040), with change in myoglobin related to plasma IL-8 (r=0.582, P=0.007) and plasma MCP-1 (r=0.457, P=0.043), and muscle MCP-1 protein (r=0.588, P=0.017); cortisol was related to plasma IL-8 (r=0.613, P=0.004), muscle IL-8 protein (r=0.681, P=0.004), and plasma MCP-1 (r=0.442, P=0.050). In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1

    Anxiety-like behavior and structural changes of the bed nucleus of the stria terminalis (BNST) in gestational protein-restricted male offspring

    Get PDF
    Animal evidence has suggested that maternal emotional and nutritional stress during pregnancy is associated with behavioral outcomes in offspring. The nature of the stresses applied may differ, but it is often assumed that the mother's hippocampus-hypothalamic-pituitary-adrenal (HHPA) axis response releases higher levels of glucocorticoid hormones. The bed nucleus of the stria terminalis (BNST) is in a pivotal position to regulate the HHPA axis and the stress response, and it has been implicated in anxiety behavior. In the current study, to search whether BNST structural changes and neurochemical alterations are associated with anxiety-related behavior in adult gestational protein-restricted offspring relative to an age-matched normal protein diet (NP) rats, we conduct behavioral tests and, BNST dendritic tree analysis by Sholl analysis, associated to immunoblotting-protein quantification [11β-HSD2, GR, MR, AT1R, 5HT1A and 5HT2A, corticotrophin-releasing factor (CRH) and CRH1]. Dams were maintained either on isocaloric standard rodent chow [with NP content, 17% casein or low protein content (LP), 6% casein] chow throughout their entire pregnancy. Here, in rats subjected to gestational protein restriction, we found: (a) a significant reduction in dendritic length and impoverished dendritic arborization in BNST neurons; (b) an elevated plasmatic corticosterone levels; and (c) associated with enhanced anxiety-like behavior when compared with age-matched NP offspring. Moreover, altered protein (11β-HSD2, GR, MR and type 1 CRH receptors) expressions may underlie the increase in anxiety-like behavior in LP offspring. This work represents the first demonstration that BNST developmental plasticity by maternal protein restriction, resulting in fine structural changes and neurochemical alterations that are associated with modified behavioral states.Fundação de Amparo à Pesquisa do Estado de São Paulo (2005/54362-4 and 2013/12486-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)info:eu-repo/semantics/publishedVersio

    Epidemiology of Methicillin‐Resistant \u3cem\u3eStaphylococcus aureus\u3c/em\u3e Bacteremia in Gaborone, Botswana

    Get PDF
    This cross‐sectional study at a tertiary‐care hospital in Botswana from 2000 to 2007 was performed to determine the epidemiologic characteristics of Staphylococcus aureus bacteremia. We identified a high prevalence (11.2% of bacteremia cases) of methicillin‐resistant S. aureus (MRSA) bacteremia. MRSA isolates had higher proportions of resistance to commonly used antimicrobials than did methicillin‐susceptible isolates, emphasizing the need to revise empiric prescribing practices in Botswana

    Enhanced Astrocytic Ca\u3csup\u3e2+\u3c/sup\u3e Signals Contribute to Neuronal Excitotoxicity after Status Epilepticus

    Get PDF
    Status epilepticus (SE), an unremitting seizure, is known to cause a variety of traumatic responses including delayed neuronal death and later cognitive decline. Although excitotoxicity has been implicated in this delayed process, the cellular mechanisms are unclear. Because our previous brain slice studies have shown that chemically induced epileptiform activity can lead to elevated astrocytic Ca2+ signaling and because these signals are able to induce the release of the excitotoxic transmitter glutamate from these glia, we asked whether astrocytes are activated during status epilepticus and whether they contribute to delayed neuronal death in vivo. Using two-photon microscopy in vivo, we show that status epilepticus enhances astrocytic Ca2+ signals for 3 d and that the period of elevated glial Ca2+ signaling is correlated with the period of delayed neuronal death. To ask whether astrocytes contribute to delayed neuronal death, we first administered antagonists which inhibit gliotransmission: MPEP [2-methyl-6-(phenylethynyl)pyridine], a metabotropic glutamate receptor 5 antagonist that blocks astrocytic Ca2+ signals in vivo, and ifenprodil, an NMDA receptor antagonist that reduces the actions of glial-derived glutamate. Administration of these antagonists after SE provided significant neuronal protection raising the potential for a glial contribution to neuronal death. To test this glial hypothesis directly, we loaded Ca2+ chelators selectively into astrocytes after status epilepticus.We demonstrate that the selective attenuation of glial Ca2+ signals leads to neuronal protection. These observations support neurotoxic roles for astrocytic gliotransmission in pathological conditions and identify this process as a novel therapeutic target

    DCC gene network in the prefrontal cortex is associated with total brain volume in childhood

    Get PDF
    BACKGROUND: Genetic variation in the guidance cue DCC gene is linked to psychopathologies involving dysfunction in the prefrontal cortex. We created an expression-based polygenic risk score (ePRS) based on the DCC coexpression gene network in the prefrontal cortex, hypothesizing that it would be associated with individual differences in total brain volume. METHODS: We filtered single nucleotide polymorphisms (SNPs) from genes coexpressed with DCC in the prefrontal cortex obtained from an adult postmortem donors database (BrainEAC) for genes enriched in children 1.5 to 11 years old (BrainSpan). The SNPs were weighted by their effect size in predicting gene expression in the prefrontal cortex, multiplied by their allele number based on an individual's genotype data, and then summarized into an ePRS. We evaluated associations between the DCC ePRS and total brain volume in children in 2 community-based cohorts: the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) and University of California, Irvine (UCI) projects. For comparison, we calculated a conventional PRS based on a genome-wide association study of total brain volume. RESULTS: Higher ePRS was associated with higher total brain volume in children 8 to 10 years old (β = 0.212, p = 0.043; n = 88). The conventional PRS at several different thresholds did not predict total brain volume in this cohort. A replication analysis in an independent cohort of newborns from the UCI study showed an association between the ePRS and newborn total brain volume (β = 0.101, p = 0.048; n = 80). The genes included in the ePRS demonstrated high levels of coexpression throughout the lifespan and are primarily involved in regulating cellular function. LIMITATIONS: The relatively small sample size and age differences between the main and replication cohorts were limitations. CONCLUSION: Our findings suggest that the DCC coexpression network in the prefrontal cortex is critically involved in whole brain development during the first decade of life. Genes comprising the ePRS are involved in gene translation control and cell adhesion, and their expression in the prefrontal cortex at different stages of life provides a snapshot of their dynamic recruitment

    The Influence of Gestational Diabetes on Neurodevelopment of Children in the First Two Years of Life: A Prospective Study

    Get PDF
    10.1371/journal.pone.0162113PloS one119e0162113GUSTO (Growing up towards Healthy Outcomes
    corecore