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Abstract

Objective

Analyze the relation of gestational diabetes and maternal blood glucose levels to early cog-

nitive functions in the first two years of life.

Methods

In a prospective Singaporean birth cohort study, pregnant women were screened for gesta-

tional diabetes at 26–28 weeks gestation using a 75-g oral glucose tolerance test. Four hun-

dred and seventy three children (n = 74 and n = 399 born to mothers with and without

gestational diabetes respectively) underwent neurocognitive assessments at 6, 18, and/or

24 month, including electrophysiology during an attentional task and behavioral measures

of attention, memory and cognition.

Results

Gestational diabetes is related to left hemisphere EPmax amplitude differences (oddball

versus standard) at both six (P = 0.039) and eighteen months (P = 0.039), with mean
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amplitudes suggesting offspring of mothers with gestational diabetes exhibit greater neuro-

nal activity to standard stimuli and less to oddball stimuli. Associations between 2-hour

maternal glucose levels and the difference in EPmax amplitude were marginal at 6 months

[adjusted β = -0.19 (95% CI: -0.42 to +0.04) μV, P = 0.100] and significant at 18 months

[adjusted β = -0.27 (95% CI: -0.49 to -0.06) μV, P = 0.014], and the EPmax amplitude differ-

ence (oddball-standard) associated with the Bayley Scales of Infant and toddler Develop-

ment-III cognitive score at 24 months [β = 0.598 (95% CI: 0.158 to 1.038), P = 0.008].

Conclusion

Gestational diabetes and maternal blood glucose levels are associated with offspring neu-

ronal activity during an attentional task at both six and eighteen months. Such electrophysi-

ological differences are likely functionally important, having been previously linked to

attention problems later in life.

Introduction
The incidence of diabetic pregnancies is increasing [1, 2], with research reporting adverse
effects on offspring perinatal [3] and long-term health [4], including poorer cognitive out-
comes [5–8]. However, confounders such as socioeconomic status may make some findings
difficult to interpret [9, 10]. Since these confounders accumulate with age, the effects of diabetic
pregnancies are better investigated during early childhood. To date, at least eight studies have
focused on children aged two or younger, and most observed an association between diabetic
pregnancies [gestational diabetes mellitus (GDM) or pre-gestational diabetes] and poor cogni-
tive performance [7, 8, 11–16]. However, the majority of such research, including all research
in infants (under 12 months), has focused on memory [8, 11–15] and all but one infant study,
used event related potentials (ERPs).

ERPs reflect the coordinate neuronal activity that occurs in response to experimental sti-
muli. They reflect processing as it unfolds, and an ERP that occurs rapidly after stimulus onset
is likely to reflect sensory processes, while slightly later occurring ERPs may reflect attention,
and later components are often considered indicative of memory [17]. Several ERP memory
studies report an influence of diabetic pregnancies not only on late occurring ERPs, but also
earlier ERPs, believed to reflect attentional processes [11–13]. These findings are consistent
with research in children, where the impact of diabetic pregnancies has been found to extend
beyond memory, including language [7], motor skills [18] and general cognition [5, 13]. How-
ever, findings with behavioral measures have been inconsistent. While some groups observed
poorer scores on the Mental Development Index of the Bayley Scales of Infant Development
(BSID) [12, 13], others report no significant differences [11, 19]. Aside from the possibility of
differential cross-study exposure to accumulating confounding factors, one potential reason
for inconsistencies is that in early life, the detection of effects from maternal hyperglycemia
may require electrophysiological testing methods. It has been previously suggested that ERPs
may detect cognitive differences in infants of GDMmothers better than other tests [11, 12].
Seven previous ERP studies have reported associations between diabetic pregnancy and aspects
of neurophysiology reflecting memory updating [11–16, 20]. Four also included behavioral
measures of infant memory, such as deferred imitation, but only two of these observed signifi-
cant associations with GDM [13, 20]. In one of the studies reporting no effects of GDM on
behavioral (BSID) performance, GDM associated changes in electrophysiology were them-
selves predictive of BSID scores [15].
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In our study, we utilized behavioral and eye tracking indicators of infant memory and atten-
tion as well as an electrophysiological attentional task, to address three important gaps in the
current literature. First, we examined whether GDM influences attention, as measured by ERP
during the auditory oddball task. Second, to assess a possible dose-response effect, we investi-
gated whether maternal blood glucose levels predict infant cognitive functioning, across the
normal and GDM ranges. Third, as past research has shown inconsistent results on GDM and
behavioral measures of cognition, we explored whether GDM associates with such measures,
and in keeping with de Regnier et al. [15], we aimed to determine whether any observed GDM
related differences in ERPs were predictive of BSID cognitive score.

Materials and Methods

Participants
Pregnant women in their first trimester were recruited at Singapore’s Kandang Kerbau
Women's and Children's Hospital and National University Hospital between June 2009 and
September 2010 (n = 1247) to join the Growing Up in Singapore Towards healthy Outcomes
(GUSTO) prospective birth cohort study. Women with type 1 diabetes mellitus, on chemother-
apy or psychotic medications were not eligible to participate. [21] Infants were delivered
between November 2009 and May 2011. A subgroup of mother and child dyads took part in
neurocognitive assessments between June 2010 and May 2013 when the children were 6
months (n = 473), 18 months (n = 431), and 24 months (n = 514) of age [22].

Participants with known type 2 diabetes and/or pregnancy complications (e.g., preeclamp-
sia) other than gestational diabetes, multiple pregnancy (i.e twins), offspring who received a
last recorded Apgar score of less than 9, had a birthweight less than 2500 g or gestational age of
less than 37 weeks, were conceived by in vitro fertilization, and/or were tested outside the win-
dow periods (6 month visit: 6 months ± 2 weeks; 18 month visit: 17 to 19 months and 24
month visit: 23 to 25 months) were excluded. 473 subjects who underwent one or more of the
neurocognitive assessments met the eligibility criteria: 357 at 6 months, 327 at 18 months and
398 at 24 months. Non-participation at each stage was detailed in Cai et al. [22], briefly non-
participation could be due to lack of interest, busy schedules, inability to reach the participants
or their dropout from the cohort study.

The study was approved by the National Healthcare Group Domain Specific Review Board
(reference number D/09/021) and the Sing Health Centralized Institutional Review Board (ref-
erence number 2009/280/D). All participants gave informed written consent prior to their
participation.

Diagnosis of GDM and Blood Glucose Measurement
GDM was diagnosed at 26–28 weeks gestation using a 75-g oral glucose tolerance test after
overnight fasting. Blood glucose levels were collected twice (fasting and 2-hour post-glucose)
to minimize subject burden. Therefore, we used the 1999 World Health Organization (WHO)
diagnostic criteria, which defines GDM as�7.0 mmol/L for fasting glucose and/or�7.8
mmol/L for 2-hour post-glucose [23, 24]. Women with GDM were subsequently managed
according to standard hospital protocols.

Cognitive Outcome Measurements
Neurocognitive assessments were carried out at 6, 18 and 24 months. Details of the testing pro-
cedures have been previously described [22]. Briefly, we assessed memory (habituation at 6
months; deferred imitation at 6, 18 and 24 months; relational binding at 6 months) and
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attention [visual expectation and auditory oddball ERP at 6 and 18 months], together with a
global measure based on the Bayley Scale of Infant and Toddler Development, Third Edition
(BSID-III) which includes five subscale scores for cognition, expressive and receptive language
and both fine and gross motor function [25].

Auditory Oddball (Event-Related Potentials)
The detailed protocol was previously described [22] (details in S1 Supporting Information).
Briefly, the children were presented with the sound syllables “ma” and “na.” The presentation
of “ma” vs “na” as the standard sound was counterbalanced. Stimuli (475ms each) were pre-
sented in 4 blocks (total of 1600 trials, with a 800ms inter-stimulus interval and the oddball
sound was played for 15% of the trials). Data were collected with a NetStation 300 (Electrical
Geodesics, Inc., Eugene, OR) within a range of 0–100 Hz, initially referenced to the vertex, via
a 128 channel system.

Two distinct ERP components were observed in the whole GUSTO sample, an early nega-
tive (EN) deflection (6 months: 8 to 228ms; 18 months: 8 to 218ms) followed by an early posi-
tive (EP) peak (6 months: 128 to 508ms; 18 months: 98 to 438ms). The most negative and
positive points within the relevant time windows were extracted for EN and EP respectively for
all participants.

Other Data
Antenatally, mothers completed questionnaires regarding demographic and socioeconomic
status, medical histories, smoking and alcohol exposures as well as maternal mood and anxiety
[Edinburgh Postnatal Depression Scale (EPDS) [26] and the State-Trait Anxiety Inventory
(STAI) [27] respectively]. Gestational weight gain z scores were derived as described previously
(28). Midwives recorded birth outcomes (e.g., birthweight and gestational age) and Apgar
scores at delivery.

Statistical Analysis
Continuous and categorical infant and maternal characteristics were compared between GDM
and non-GDMmothers using independent sample t-test and chi-square tests, respectively.
Multivariable linear regression models were used to assess the effect of glucose levels (continu-
ous variable) or GDM status (categorical variable) on each behavioral outcome and unstan-
dardized coefficients are reported. These models were adjusted for ethnicity, gestational age
and sex of the offspring, as well as the following maternal covariates: maternal education, age,
pre-pregnancy body mass index (BMI), gestational weight gain z-score and imputed (imputa-
tion by hot deck imputation for missing items) antenatal anxiety (STAI) scores. Procedural
variables (e.g. infant sleep state at test, stimuli type) associated with predictor and outcome var-
iables were also included. Maternal age, education, ethnicity, gestational age, pre-pregnancy
BMI and gestational weight gain were selected as they are known to affect both GDM risk and
offspring cognition independently of GDM. We included maternal antenatal anxiety as a
covariate, because psychological stress may influence glucose tolerance [28] and evidence sug-
gests that maternal mood during pregnancy can influence offspring cognition [29]. The ratio
of subjects to the number of independent variables (covariates and exposure of interest) for all
the final models ranged from 10.2 to 35.5. Models were re-run using bootstrapping for all sig-
nificant and marginal (P<0.10) findings, to rule out false positive findings associated with any
deviance from model assumptions. Bootstrapping yielded similar results (available upon
request) and where the results changed from P<0.10 to P�0.10, the results are reported. For
analysis of ERP data at 6 and 18 months, we performed repeated-measures analysis of variance
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(ANCOVA) including the aforementioned covariates. Separate models considered component
(i.e., EN and EP) amplitudes and latencies. Given our primary interest in attention (i.e.,
reflected here as neuronal activity to different stimuli), within subject ERP predictors were
specified as stimuli (oddball vs standard), stimuli�electrode region (frontal vs central), stimu-
li�hemisphere (left vs right) and stimuli�hemisphere�region. Likewise, only covariate interac-
tions including stimuli were retained in the models. Interaction terms associated (p<0.10) with
GDM were further examined with the same repeated measures ANCOVA approach, with fur-
ther stratification of variable(s). Differences (p<0.10) between GDM and controls were fol-
lowed up with multivariable linear regression analyses to examine the magnitude of difference
in stimuli responsiveness according to GDM status. Repeated measure ANCOVA was used to
examine the within group comparison of response to oddball and standard stimuli, followed by
pairwise comparison between stimuli. In cases where EP effects (p<0.10) were observed, sensi-
tivity analyses were conducted using the difference between the EN trough and EP peak
(EN-EP complex). In addition, post hoc multivariable linear regression analyses were con-
ducted to examine the prediction from blood glucose levels to differential neuronal activity
(oddball-standard).

Multivariable linear regression models were used to assess the association between ERP var-
iables that were associated with GDM status and BSID-III cognitive score, with the same covar-
iates adjusted above.

Data were missing on maternal age in 1.7% (n = 8), antenatal EPDS in 3.2% (n = 15), STAI
scores in 7.0% (n = 33), household income in 7.6% (n = 36) and maternal education in 3.0%
(n = 14) of cases. For all significant and marginal (P<0.10) findings, models were re-run with
multiple imputation. Multiple imputation of missing data (maternal education, maternal ante-
natal anxiety scores) using chained equations imputation (20 imputations) yielded similar find-
ings to those in subjects with complete data (imputed data available upon request). All analyses
were done with SPSS version 22.0 (IBM, Armonk, NY, USA).

Results

Participant Characteristics
Mother-child pairs who participated in the neurocognitive assessments were comparable to the
non-participants in ethnicity, household income, maternal age and education [22]. Mothers
who participated in the neurocognitive assessments displayed more anxiety and depression
traits during pregnancy than non-participants [22]. Non-participation at each stage was previ-
ously described [22].

Seventy four and 399 offspring born to mothers with and without GDM respectively were
included in this analysis. Maternal age (33.6 ± 4.8 vs 30.0 ± 5.1 years; P<0.001) and education
level were higher (P = 0.021) in mothers with GDM (Table 1). A lower proportion of male
infants were born to mothers with GDM (41.9% vs 56.1%; P = 0.024). GDM and control groups
were comparable on other variables (Table 1).

Event-Related Potential (ERP) Assessment of Attention
Fig 1 illustrates the grand averaged ERP recording of electrodes from the left hemisphere, to
standard and oddball stimuli at 6 and 18 months.

No significant main or interaction effects of GDM were observed at 6 and 18 months with
regards to the EN component amplitude or latency, nor with the EP latency (data not shown).
However, we observed a stimuli�hemisphere�GDM group interaction (ANCOVA P = 0.080)
for the early positive (EPmax) amplitude in 6-month-olds. The stimuli�GDM interaction was
significant over the left hemisphere (ANCOVA P = 0.039) but not the right (ANCOVA
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P = 0.964). Indeed, GDM associated with differential processing of oddball and standard sti-
muli (see Table 2 and S2 Supporting Information). In the left hemisphere, the activity to stan-
dard stimuli was greater, though non-significantly so, amongst offspring of mothers with
GDM (oGDM) (mean ± SD: 3.23 ± 0.30 μV) compared to controls (2.95 ± 0.17 μV)
(P = 0.398). Neuronal activity to oddball stimuli was lesser, albeit non-significantly so, amongst
oGDMs (2.62 ± 0.30 μV) than their control counterparts (3.10 ± 0.17 μV) (P = 0.153).

Initial analyses of the 18 month data did not reveal any main or interaction effects of GDM
on the EN or EP. Nevertheless, given the six month findings, we examined whether, a similar

Table 1. Comparison of baseline characteristics of participants with and without GDM.

oGDM (N = 74) Control (N = 399) P value

Maternal Variables

Age (years) 33.6 ± 4.8 30.0 ± 5.1 <0.001

Pre-Pregnancy BMI (kg/m2) 23.6 ± 4.4 22.8 ± 4.6 0.148

Antenatal Maternal EPDS score 7.4 ± 4.3 7.8 ± 4.6 0.424

Antenatal Maternal STAI-state score 34.1 ± 9.6 35.0 ± 9.7 0.458

Antenatal Maternal STAI-trait score 35.3 ± 8.8 37.2 ± 9.0 0.100

Fasting glucose (mmol/L) 4.60 ± 0.61 4.32 ± 0.42 <0.001

120min glucose (mmol/L) 8.71 ± 1.11 5.91 ± 0.99 <0.001

Gestational weight gain z-score -0.84 ± 1.06 -0.86 ± 1.05 0.847

Alcohol consumption during pregnancy, n (%) 1 (1.4) 9 (2.3) 0.619

Smoked during pregnancy, n (%) 1 (1.4) 11 (2.8) 0.778

Infant Variables at birth

Gestational Age (weeks) 38.8 ± 1.0 39.0 ± 1.0 0.204

Birth Weight (g) 3195 ± 376 3178 ± 366 0.702

Birth Weight >4000g, n (%) 1 (1.4) 9 (2.3) 0.619

Birth Length (cm) 49.2 ± 2.0 48.8 ± 2.0 0.100

Sex of child (Male), n (%) 31 (41.9) 224 (56.1) 0.024

Ethnicity, n (%) 0.179

Chinese 46 (62.2) 211 (52.9)

Malay 15 (20.3) 123 (30.8)

Indian 13 (17.6) 65 (16.3)

Maternal Education, n (%) 0.021

Primary 3 (4.1) 18 (4.5)

Secondary 9 (12.2) 99 (24.8)

Diploma/ Technical Education 26 (35.1) 145 (36.3)

University 32 (43.2) 120 (30.1)

Postgraduate 3 (4.1) 4 (1.0)

Missing Data 1 (1.4) 13 (3.3)

Household Income, n (%)

$0–999 0 (0.0) 14 (3.5) 0.425

$1000–1999 8 (10.8) 47 (11.8)

$2000–3999 19 (25.7) 116 (29.1)

$4000–5999 19 (25.7) 86 (21.6)

>$6000 23 (31.1) 105 (26.3)

Don’t know/ Refused to answer/Missing data 5 (6.8) 31 (7.8)

Data presented as mean ± standard deviation. oGDM- offspring of mothers with Gestational Diabetes Mellitus, EPDS-Edinburgh Postnatal Depression

Scale, STAI- State-Trait Anxiety Inventory

doi:10.1371/journal.pone.0162113.t001
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Fig 1. Composite (grand average) ERP recording of electrodes in the left hemisphere of 6-month-old
controls (A) and offspring of mothers with GDM (oGDMs) (B), as well as 18-month-old controls (C) and
oGDMs (D). The solid line represents the standard stimulus and the dotted line represents the oddball
stimulus. The boxed region of the graph corresponds to the EPmax, where the degree of differential neuronal
activity (oddball-standard) significantly varied according to GDM status.

doi:10.1371/journal.pone.0162113.g001
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effect of stimuli�GDM in the left hemisphere would be observed. Indeed, the stimuli�GDM
interaction remained significant over the left hemisphere (ANCOVA P = 0.039) and not the
right (ANCOVA P = 0.576). Compared to controls (mean ± SD: 1.85 ± 0.13 μV), oGDMs
(2.44 ± 0.26 μV) showed significantly more neuronal activity towards standard stimuli
(P = 0.038). Though not significant, oGDMs also showed lesser neuronal activity towards odd-
ball stimuli (1.78 ± 0.35 μV) compared to controls (2.12 ± 0.18 μV) (P = 0.376).

A dose-response relationship was observed between the 2-hour blood glucose concentration
and the difference between the EPmax to oddball and standard in the left hemisphere (Fig 2).
This relationship showed a marginal trend at 6 months [adjusted β = -0.19 (95% CI: -0.42 to
0.04) μV, R2 = 0.214] (Fig 2A) and was significant at 18 months [adjusted β = -0.27 (95% CI:
-0.49 to -0.06) μV, R2 = 0.182] (Fig 2B). An increase in maternal 2-hour blood glucose level
(per mmol/L) was associated with a non-significant decrease in neuronal activity towards the
oddball stimulus at both time points [6-month adjusted β = -0.046 (95% CI: -0.254 to 0.163)
μV; 18-month adjusted β = -0.131 (95% CI: -0.318 to 0.056) μV], and a non-significant increase
in neuronal activity towards the standard stimulus at six months [6-month adjusted β = 0.145
(95% CI: -0.062 to 0.351) μV) as well as a significant increase in neuronal activity towards the
standard stimulus at 18-month adjusted β = 0.141 (95% CI: 0.003 to 0.280)μV]. Bootstrapped
results show that at 18 months, the increase in neuronal activity towards the standard stimulus
was no longer statistically significant (P = 0.150).

Sensitivity analysis using the EN-EP complex are reported in the S2 Supporting Informa-
tion. The associations between EPmax amplitude and GDM status (or maternal blood glucose
concentration) did not differ significantly by sex of the child or ethnicity.

Behavioral Measures
No significant effects of GDM or maternal blood glucose levels were observed on any behav-
ioral measures (see S2 Supporting Information) except that oGDMs (547 ± 29ms) responded
in a marginally shorter time to the stimuli compared to controls (606 ±16ms) (P = 0.061) dur-
ing Visual Expectation pattern trials at 18 months. There was a trend association between BSI-
D-III fine motor scaled score and GDM, where the oGDM has a marginally higher fine motor
score (11.50 ± 0.35) compared to controls (10.88 ± 0.17) (P = 0.097) but with bootstrapping,
the association was lost (P = 0.10).

Table 2. Effect of GDM on difference in EPmax amplitude towards oddball and standard stimuli, stratified by hemispheres.

Unadjusted difference in the mean amplitudes to
oddball and standard stimuli a

Adjusted difference in the mean amplitudes to
oddball and standard stimuli a b

Control oGDM Control oGDM

6months (n = 104 control, 25 GDM)

Left Hemisphere (μV) 0.06 (1.51) -0.60 (1.47)* 0.15 (1.58) -0.62 (1.51)*

Right Hemisphere (μV) 0.06 (1.53) -0.21 (1.56) -0.16 (1.66) -0.18 (1.65)

18 months (n = 87 control, 15 GDM)

Left Hemisphere (μV) 0.23 (1.44) -0.32 (1.25) 0.27 (1.72) -0.66 (1.44)*

Right Hemisphere (μV) 0.16 (1.47) -0.04 (1.57) 0.09 (1.96) -0.20 (1.69)

a Stimuli difference = oddball—standard

*P<0.05 compared to control. Data presented as mean (SD)
b Adjusted for maternal age, maternal education, sex and gestational age of child, ethnic group, 26 weeks STAI-state, maternal pre-pregnancy BMI and

gestational weight gain at 26 weeks gestation.

doi:10.1371/journal.pone.0162113.t002
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Fig 2. Scatterplots of stimuli difference (oddball-standard) in EPmax amplitudes, over the left
hemisphere. Stimuli difference in EPmax amplitudes over the left hemisphere in A) 6 months and B) 18
months old infants against maternal 2-hour plasma glucose at 26–28 weeks gestation. Curves lines
correspond to 95% confidence interval of the mean.

doi:10.1371/journal.pone.0162113.g002
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However, we noted that the EPmax amplitude difference over the left hemisphere (oddball-
standard) in 6 months old infants was significantly associated with the Bayley cognitive score
(β = 0.598, P = 0.008) (i.e a more positive EPmax amplitude difference, as observed in controls,
is associated with a higher cognitive score). A similar but non-significant trend was also
observed at 18 months (β = 0.228, P = 0.319).

Discussion
We found that GDM is associated with alterations in neurophysiology previously reported as
relevant to attention [30] and distractibility [31]. We also found that these neurophysiological
differences, observed at 6 and 18 months of age, were associated with maternal 2-hour blood
glucose concentrations at 26–28 weeks of pregnancy. These results are consistent with a recent
report wherein GDM impairs human fetal brain activity, with slower postprandial auditory
evoked responses [32]. In keeping with some [11, 12] but not all [8, 13] previous studies, we
did not detect much influence of GDM status or maternal blood glucose on behavioral tests of
cognition in the first two years of life. GDM status was not predictive of attention, memory-
related behaviors or overall development assessed by BSID-III except faster reaction time
towards the stimuli during the visual expectation task, which indicate faster attentional orient-
ing [33]. Similarly, when taking part in behaviorally based (not eye tracking) forms of atten-
tional tasks, children with attention deficit hyperactivity disorder (ADHD) have sometimes
been reported to respond more quickly, compared to controls [34]. Still, quicker processing
speed during visual expectation has also been suggested to be an important component of bet-
ter infant cognition [35]. Thus, the meaning of the observed association between GDM and
visual expectation reaction speed is unclear.

Overall, however, similar to findings by Nelson et al., [11, 12] our results may suggest the
sensitivity of electrophysiological measurement tools to detect effects of GDM. Our findings
extend past findings by suggesting an impact of maternal glycemia on attentional processing,
even at early stages of development.

In particular, during our ERP tasks at both 6 and 18 months, oGDMs differed from their con-
trol counterparts in the way they processed oddball versus standard sounds, especially over the
left hemisphere—the hemisphere generally considered to be responsible for attention and pro-
cessing of speech sounds [36] used as stimuli in our ERP tasks. To our knowledge, no previous
research has assessed the influence of GDM on infant attention in the first two years of life,
despite many reports of an increased prevalence of attention problems amongst offspring of
mothers with diabetic pregnancies [6, 18, 37–39]. Prior research in infants has focused largely on
memory, likely influenced by knowledge of the pathophysiology of diabetic pregnancy (fetal
hyperglycemia, hypoxemia and iron deficiency and neonatal hypoglycemia) [40]. Animal
research indicates that brain regions like the hippocampus and striatum, which are important for
memory processing, are particularly sensitive to prenatal iron deficiency [41, 42]. Nevertheless,
our observations with the ERP may help to bridge the evidence gap between memory effects
reported in infancy [8, 11–15] and later childhood and adult studies focusing on attention.

ERP studies utilizing memory paradigms have observed differences in early ERP compo-
nents thought to reflect differences in attention during a memory task [11–13]. Past research
used paradigms that compare neural responses to a stimulus that is well-encoded and familiar
(voice or face of the mother) to response to a novel stimulus (voice or face of a stranger). Thus,
differences in attention allocation are presumed to be reflective of differences in the strength
with which the familiar stimulus was encoded into memory. As familiarization and encoding
occur any time prior to testing, it is not possible to specifically examine the concurrent influ-
ence of GDM on attentional and/or memory processes at the time of testing.
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In our testing paradigm, instead of using pre-familiarized versus novel stimuli, we presented
two familiar phonemes at different rates. Thus the standard phoneme, which was presented
85% of the time, should become familiar over the course of the testing. Attentional processing
is expected to eventually decline, a pattern consistent with expectations concerning neural
habituation, defined as a decrease in neural response resulting from repeated stimulation [43].
Here, oGDMs responded to the familiar stimuli to a relatively greater extent than controls—
suggesting failure to encode the repeated sound, and correspondingly, persistence in atten-
tional processing manifest during the attention-relevant task. Greater EPmax amplitude to the
standard stimuli may imply poorer habituation in oGDMs, possibly indicating weaker adaptive
brain functioning [44], as well as memory [45]. This lends support to the well-reported effect
of diabetic pregnancy on infant memory [8, 11–15]. Future studies should assess whether
GDM-related early memory deficits underlie subsequent difficulties in attentional processing.

Our results suggest the importance of electrophysiological methods for observing early-life
effects of GDM. While some investigators have observed differences in behavioral tasks involv-
ing memory [8, 13, 20], we did not detect significant differences in any of our behavioral mem-
ory tasks. Other studies have reported differences in oGDMs, based on ERP, but not on
behavioral measures [11, 12], suggesting that behavioral measures may be less sensitive than
ERP for detecting subtle GDM effects. Thus, as suggested by Nelson and colleagues [11, 12],
our findings confirm that electrophysiology may be a better tool for detecting subtle GDM
effects. The women in our cohort were universally screened for GDM and followed up with
standard management and these may have contributed to the absence of associations with
behavioral outcomes. Although we have no data on compliance with GDM treatment, the com-
parable birthweights and rate of macrosomia (birthweight of>4000g) (Table 1) of oGDMs
and controls suggest that the mothers in our cohort had well-controlled GDM. Several studies
that reported significant effects of GDM on behavioral outcomes also observed higher birth-
weights in the offspring [5, 8, 20].

Our findings suggest that even well-controlled GDM can result in subtle differences in the
offspring’s neurodevelopment. These subtle differences may be important, as electrophysiolog-
ical response during the oddball task has been associated with later adverse clinical outcomes,
including ADHD [30, 46] which has been previously reported to be more prevalent in offspring
of mothers with diabetic pregnancies [6, 18, 37–39]. Likewise, as observed here, differential
ERPs during the oddball task may predict performance on a developmental screening tool like
BSID-III [15, 47].

Our study has several strengths, including the use of a variety of measures to test specific
cognitive processes in the first two years of life, while most studies focused on memory and
general cognition. Our study is based on a large Asian cohort, which is important as Asians are
at higher risk of GDM than their Caucasians counterparts [48]. Our study controlled for many
potential confounders and still observed associations between GDM and offspring neurocogni-
tive outcomes. Finally, ours is one of the few studies to demonstrate a dose-dependent associa-
tion of maternal blood glucose with neurocognitive outcomes in the offspring, which suggests a
beneficial impact of good glycemic control even below the diagnostic threshold for GDM.

We analyzed many outcomes and found significant GDM related differences only in 2 of 14
cognitive tasks. While we cannot rule out the possibility of chance findings, it is important to
note that the associations we observed with the ERP task are consistent with past research [11–
13]. Moreover, we observed consistent differences in ERP results at both 6 and 18 months of
age as well as a dose-response relation with maternal 2-h post OGTT blood glucose, thus the
findings are unlikely to have occurred by chance. It is of note that amongst controls, we only
observed significantly greater neuronal activity to the oddball as compared to the standard sti-
muli at six, and not eighteen, months. However, individual differences in passive auditory tasks
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are sometimes observed despite a lack of statistically significant differences in neuronal activity
by stimuli type [49]. Moreover, amplitudes of positive auditory oddball components have been
found to decrease after nine months of age [50] and an eventual lack of differentiation between
oddball and standard sounds may indicate a developmental shift from the detection of any
(acoustic) deviance to the more specific detection of context relevant change [51]. Although
women whose children participated in the neurocognitive assessments differed in some
respects from non-participants [22], it is unlikely that these differences would bias our findings.
As we recruited the women in their first trimester, we were unable to test and rule out unde-
tected pre-gestational diabetes within the GDM group. Another limitation is the lack of strong
indicators of glycemic control (eg HbA1c) to be able to definitively suggest if the GDM cases in
our study were well-controlled.

In conclusion, we observed an association between GDM and attention in offspring under 2
years of age. ERP measures may be sufficiently sensitive to detect subtle differences in oGDMs
during early life, particularly in well controlled GDM. If the association we observed between
GDM and altered offspring attention persists at later stages of development, pre-conception
and early pregnancy prevention programs should be considered for women at risk for gesta-
tional diabetes, as should interventions for their offspring.
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