95 research outputs found

    Bone gain following loading is site-specifically enhanced by prior and concurrent disuse in aged male mice

    Get PDF
    The primary aim of osteoanabolic therapies is to strategically increase bone mass in skeletal regions likely to experience high strains. In the young healthy skeleton, this is primarily achieved by bone's adaptation to loading. This adaptation appears to fail with age, resulting in osteoporosis and fractures. We previously demonstrated that prior and concurrent disuse enhances bone gain following loading in old female mice. Here, we applied site specificity micro-computed tomography analysis to map regional differences in bone anabolic responses to axial loading of the tibia between young (19-week-old) and aged (19-month-old), male and female mice. Loading increased bone mass specifically in the proximal tibia in both sexes and ages. Young female mice gained more cortical bone than young males in specific regions of the tibia. However, these site-specific sex differences were lost with age such that bone gain following loading was not significantly different between old males and females. To test whether disuse enhances functional adaption in old male mice as it does in females, old males were subjected to sciatic neurectomy or sham surgery, and loading was initiated four days after surgery. Disuse augmented tibial cortical bone gain in response to loading in old males, but only in regions which were load-responsive in the young. Prior and concurrent disuse also increased loading-induced trabecular thickening in the proximal tibia of old males. Understanding how diminished background loading rejuvenates the osteogenic loading response in the old may improve osteogenic exercise regimes and lead to novel osteoanabolic therapies

    Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading.

    Get PDF
    Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones' structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (Ī¼CT) images. Resulting measures are directly comparable to those obtained through Ī¼CT analysis (R (2)ā€‰>ā€‰0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same bone

    BACE1: More than just a Ī²ā€secretase

    Get PDF
    Ī²-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the Ī²-secretase responsible for the production of Ī²-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic Ī²-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities

    Parathyroid hormone's enhancement of bones' osteogenic response to loading is affected by ageing in a dose- and time-dependent manner

    Get PDF
    Decreased effectiveness of bones' adaptive response to mechanical loading contributes to age-related bone loss. In young mice, intermittent administration of parathyroid hormone (iPTH) at 20-80Ī¼g/kg/day interacts synergistically with artificially applied loading to increase bone mass. Here we report investigations on the effect of different doses and duration of iPTH treatment on mice whose osteogenic response to artificial loading is impaired by age. One group of aged, 19-month-old female C57BL/6 mice was given 0, 25, 50 or 100Ī¼g/kg/day iPTH for 4weeks. Histological and Ī¼CT analysis of their tibiae revealed potent iPTH dose-related increases in periosteally-enclosed area, cortical area and porosity with decreased cortical thickness. There was practically no effect on trabecular bone. Another group was given a submaximal dose of 50Ī¼g/kg/day iPTH or vehicle for 2 or 6weeks with loading of their right tibia three times per week for the final 2weeks. In the trabecular bone of these mice the loading-related increase in BV/TV was abrogated by iPTH primarily by reduction in the increase in trabecular number. In their cortical bone, iPTH treatment time-dependently increased cortical porosity. Loading partially reduced this effect. The osteogenic effects of iPTH and loading on periosteally-enclosed area and cortical area were additive but not synergistic. Thus in aged, unlike young mice, iPTH and loading appear to have separate effects. iPTH alone causes a marked increase in cortical porosity which loading reduces. Both iPTH and loading have positive effects on cortical periosteal bone formation but these are additive rather than synergistic

    PTPRD and DCC Are Novel BACE1 Substrates Differentially Expressed in Alzheimerā€™s Disease: A Data Mining and Bioinformatics Study

    Get PDF
    The Ī²-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) is an extensively studied therapeutic target for Alzheimerā€™s disease (AD), owing to its role in the production of neurotoxic amyloid beta (AĪ²) peptides. However, despite numerous BACE1 inhibitors entering clinical trials, none have successfully improved AD pathogenesis, despite effectively lowering AĪ² concentrations. This can, in part, be attributed to an incomplete understanding of BACE1, including its physiological functions and substrate specificity. We propose that BACE1 has additional important physiological functions, mediated through substrates still to be identified. Thus, to address this, we computationally analysed a list of 533 BACE1 dependent proteins, identified from the literature, for potential BACE1 substrates, and compared them against proteins differentially expressed in AD. We identified 15 novel BACE1 substrates that were specifically altered in AD. To confirm our analysis, we validated Protein tyrosine phosphatase receptor type D (PTPRD) and Netrin receptor DCC (DCC) using Western blotting. These findings shed light on the BACE1 inhibitor failings and could enable the design of substrate-specific inhibitors to target alternative BACE1 substrates. Further-more, it gives us a greater understanding of the roles of BACE1 and its dysfunction in AD

    Non-canonical Keap1-independent activation of Nrf2 in astrocytes by mild oxidative stress

    Get PDF
    The transcription factor Nrf2 is a stress-responsive master regulator of antioxidant, detoxification and proteostasis genes. In astrocytes, Nrf2-dependent gene expression drives cell-autonomous cytoprotection and also non-cell-autonomous protection of nearby neurons, and can ameliorate pathology in several acute and chronic neurological disorders associated with oxidative stress. However, the value of astrocytic Nrf2 as a therapeutic target depends in part on whether Nrf2 activation by disease-associated oxidative stress occludes the effect of any Nrf2-activating drug. Nrf2 activation classically involves the inhibition of interactions between Nrf2's Neh2 domain and Keap1, which directs Nrf2 degradation. Keap1 inhibition is mediated by the modification of cysteine residues on Keap1, and can be triggered by electrophilic small molecules such as tBHQ. Here we show that astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling. Keap1 deficiency elevates basal Nrf2 target gene expression in astrocytes and occludes the effects of tBHQ, oxidative stress still induced strong Nrf2-dependent gene expression in Keap1-deficient astrocytes. Moreover, while tBHQ prevented protein degradation mediated via Nrf2's Neh2 domain, oxidative stress did not, consistent with a Keap1-independent mechanism. Moreover the effects of oxidative stress and tBHQ on Nrf2 target gene expression are additive, not occlusive. Mechanistically, oxidative stress enhances the transactivation potential of Nrf2's Neh5 domain in a manner dependent on its Cys-191 residue. Thus, astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling, meaning that further Nrf2 activation by Keap1-inhibiting drugs may be a viable therapeutic strategy

    Prophylactic and therapeutic treatment with a synthetic analogue of a parasitic worm product prevents experimental arthritis and inhibits IL-1Ī² production via NRF2-mediated counter-regulation of the inflammasome

    Get PDF
    Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1Ī² was the most down-regulated gene. Consistent with this, IL-1Ī² was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1Ī² by macrophages derived from the bone marrow of NRF2āˆ’/āˆ’ mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA

    The BACE1 product sAPPĪ² induces ER stress and inflammation and impairs insulin signaling

    Get PDF
    Objective Ī²-secretase/Ī²-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a key enzyme involved in Alzheimer's disease that has recently been implicated in insulin-independent glucose uptake in myotubes. However, it is presently unknown whether BACE1 and the product of its activity, soluble APPĪ² (sAPPĪ²), contribute to lipid-induced inflammation and insulin resistance in skeletal muscle cells. Materials/Methods Studies were conducted in mouse C2C12 myotubes, skeletal muscle from Bace1āˆ’/āˆ’mice and mice treated with sAPPĪ² and adipose tissue and plasma from obese and type 2 diabetic patients. Results We show that BACE1 inhibition or knockdown attenuates palmitate-induced endoplasmic reticulum (ER) stress, inflammation, and insulin resistance and prevents the reduction in Peroxisome Proliferator-Activated Receptor Ī³ Co-activator 1Ī± (PGC-1Ī±) and fatty acid oxidation caused by palmitate in myotubes. The effects of palmitate on ER stress, inflammation, insulin resistance, PGC-1Ī± down-regulation, and fatty acid oxidation were mimicked by soluble APPĪ² in vitro. BACE1 expression was increased in subcutaneous adipose tissue of obese and type 2 diabetic patients and this was accompanied by a decrease in PGC-1Ī± mRNA levels and by an increase in sAPPĪ² plasma levels of obese type 2 diabetic patients compared to obese non-diabetic subjects. Acute sAPPĪ² administration to mice reduced PGC-1Ī± levels and increased inflammation in skeletal muscle and decreased insulin sensitivity. Conclusions Collectively, these findings indicate that the BACE1 product sAPPĪ² is a key determinant in ER stress, inflammation and insulin resistance in skeletal muscle and gluconeogenesis in liver

    Bace1-dependent amyloid processing regulates hypothalamic leptin sensitivity in obese mice

    Get PDF
    Obesity places an enormous medical and economic burden on society. The principal driver appears to be central leptin resistance with hyperleptinemia. Accordingly, a compound that reverses or prevents leptin resistance should promote weight normalisation and improve glucose homeostasis. The protease Bace1 drives beta amyloid (AĪ²) production with obesity elevating hypothalamic Bace1 activity and AĪ²ā‚ā€“ā‚„ā‚‚ production. Pharmacological inhibition of Bace1 reduces body weight, improves glucose homeostasis and lowers plasma leptin in diet-induced obese (DIO) mice. These actions are not apparent in ob/ob or db/db mice, indicating the requirement for functional leptin signalling. Decreasing Bace1 activity normalises hypothalamic inflammation, lowers PTP1B and SOCS3 and restores hypothalamic leptin sensitivity and pSTAT3 response in obese mice, but does not affect leptin sensitivity in lean mice. Raising central AĪ²ā‚ā€“ā‚„ā‚‚ levels in the early stage of DIO increases hypothalamic basal pSTAT3 and reduces the amplitude of the leptin pSTAT3 signal without increased inflammation. Thus, elevated AĪ²ā‚ā€“ā‚„ā‚‚ promotes hypothalamic leptin resistance, which is associated with diminished whole-body sensitivity to exogenous leptin and exacerbated body weight gain in high fat fed mice. These results indicate that Bace1 inhibitors, currently in clinical trials for Alzheimerā€™s disease, may be useful agents for the treatment of obesity and associated diabetes
    • ā€¦
    corecore