12 research outputs found

    Oscillatory corticospinal activity during static contraction of ankle muscles is reduced in healthy old versus young adults

    Get PDF
    Aging is accompanied by impaired motor function, but age-related changes in neural networks responsible for generating movement are not well understood. We aimed to investigate the functional oscillatory coupling between activity in the sensorimotor cortex and ankle muscles during static contraction. Fifteen young (20–26 yr) and fifteen older (65–73 yr) subjects were instructed to match a target force by performing static ankle dorsi- or plantar flexion, while electroencephalographic (EEG) activity was recorded from the cortex and electromyographic (EMG) activity was recorded from dorsi- (proximal and distal anterior tibia) and plantar (soleus and medial gastrocnemius) flexor muscles. EEG-EMG and EMG-EMG beta band (15–35 Hz) coherence was analyzed as an index of corticospinal activity. Our results demonstrated that beta cortico-, intra-, and intermuscular coherence was reduced in old versus young subjects during static contractions. Old subjects demonstrated significantly greater error than young subjects while matching target forces, but force precision was not related to beta coherence. We interpret this as an age-related decrease in effective oscillatory corticospinal activity during steady-state motor output. Additionally, our data indicate a potential effect of alpha coherence and tremor on performance. These results may be instrumental in developing new interventions to strengthen sensorimotor control in elderly subjects

    The development of functional and directed corticomuscular connectivity during tonic ankle muscle contraction across childhood and adolescence

    Get PDF
    In adults, oscillatory activity in the sensorimotor cortex is coherent with contralateral muscle activity at beta frequencies (15-35 Hz) during tonic contraction. This functional coupling reflects the involvement of the sensorimotor cortex, the corticospinal pathway, and likely also ascending sensory feedback in the task at hand. However, little is known about the developmental trajectory of task-related corticomuscular connectivity relating to the voluntary control of the ankle muscles. To address this, we recorded electroencephalography (EEG) from the vertex (Cz) and electromyography (EMG) from ankle muscles (proximal and distal anterior tibial, TA; soleus, SOL; gastrocnemius medialis, GM) in 33 participants aged 7-23 yr during tonic dorsi- and plantar flexion requiring precise maintenance of a submaximal torque level. Coherence was calculated for Cz-TA, Cz-SOL, TA-TA, and SOL-GM signal pairs. We found strong, positive associations between age and beta band coherence for Cz-TA, Cz-SOL, and TA-TA, suggesting that oscillatory corticomuscular connectivity is strengthened during childhood development and adolescence. Directionality analysis indicated that the primary interaction underlying this age-related increase was in the descending direction. In addition, performance during dorsi- and plantar flexion tasks was positively associated with age, indicating more precise control of the ankle joint in older participants. Performance was also positively associated with beta band coherence, suggesting that participants with greater coherence also exhibited greater precision. We propose that these results indicate an age-related increase in oscillatory corticospinal input to the ankle muscle motoneuron pools during childhood development and adolescence, with possible implications for maturation of precision force control. Within the theoretical framework of predictive coding, we suggest that our results may reflect an age-related increase in reliance on feedforward control as the developing nervous system becomes better at predicting the sensory consequences of movement. These findings may contribute to the development of novel intervention strategies targeting improved sensorimotor control in children and adolescents with central motor disorders

    Using Corticomuscular and Intermuscular Coherence to Assess Cortical Contribution to Ankle Plantar Flexor Activity During Gait

    Get PDF
    The present study used coherence and directionality analyses to explore whether the motor cortex contributes to plantar flexor muscle activity during the stance phase and push-off phase during gait. Subjects walked on a treadmill, while EEG over the leg motorcortex area and EMG from the medial gastrocnemius and soleus muscles was recorded. Corticomuscular and intermuscular coherence were calculated from pair-wise recordings. Significant EEG-EMG and EMG-EMG coherence in the beta and gamma frequency bands was found throughout the stance phase with the largest coherence towards push-off. Analysis of directionality revealed that EEG activity preceded EMG activity throughout the stance phase until the time of push-off. These findings suggest that the motor cortex contributes to ankle plantar flexor muscle activity and forward propulsion during gait
    corecore