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A B S T R A C T

The control of ankle muscle force is an integral component of walking and postural control. Aging impairs the
ability to produce force steadily and accurately, which can compromise functional capacity and quality of life.
Here, we hypothesized that reduced force control in older adults would be associated with altered cortico-cortical
communication within a network comprising the primary motor area (M1), the premotor cortex (PMC), parietal,
and prefrontal regions. We examined electroencephalographic (EEG) responses from fifteen younger (20–26 yr)
and fifteen older (65–73 yr) participants during a unilateral dorsiflexion force-tracing task. Dynamic Causal
Modelling (DCM) and Parametric Empirical Bayes (PEB) were used to investigate how directed connectivity
between contralateral M1, PMC, parietal, and prefrontal regions was related to age group and precision in force
production. DCM and PEB analyses revealed that the strength of connections between PMC and M1 were related
to ankle force precision and differed by age group. For young adults, bidirectional PMC-M1 coupling was
negatively related to task performance: stronger backward M1-PMC and forward PMC-M1 coupling was associ-
ated with worse force precision. The older group exhibited deviations from this pattern. For the PMC to M1
coupling, there were no age-group differences in coupling strength; however, within the older group, stronger
coupling was associated with better performance. For the M1 to PMC coupling, older adults followed the same
pattern as young adults - with stronger coupling accompanied by worse performance - but coupling strength was
lower than in the young group. Our results suggest that bidirectional M1-PMC communication is related to
precision in ankle force production and that this relationship changes with aging. We argue that the observed
differences reflect compensatory reorganization that counteracts age-related sensorimotor declines and contrib-
utes to maintaining performance.
1. Introduction

The ability to precisely regulate ankle muscle force is a critical
component of walking and postural control. Aging is commonly accom-
panied by an impaired ability to produce force steadily and precisely,
especially during low-intensity contractions (Castronovo et al., 2018;
Christou, 2011), which can compromise balance and gait function. Ankle
dorsiflexor muscles are subject to direct cortical influence (Petersen et al.,
2012), which may be related to the central role of the tibialis anterior in
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the swing phase of the gait cycle. This raises the question of whether
age-related changes in dorsiflexion force control may have cortical
correlates.

Prior work has demonstrated that during a range of motor tasks, older
adults exhibit different brain activation patterns than those seen in
younger adults (for review, see Seidler et al., 2010). Motor control in
older adults is typically characterized by greater and more diffuse
recruitment patterns (e.g. Heuninckx et al., 2008, 2005), as well as both
increases and decreases in connectivity among motor, sensory, and
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cognitive regions (Loehrer et al., 2016; Michely et al., 2018; Rowe et al.,
2006). The latter findings are particularly important in light of the notion
of functional integration in task-related networks (Friston 2003) as the
basis for emergent behavior.

In particular, one study investigating a button press task reported that
older adults exhibited greater activation of the premotor cortex (PMC)
than young adults, accompanied by greater local connectivity centered
around the PMC and reduced connectivity between more distant regions
(Rowe et al., 2006). These findings suggest that the PMC may be a key
region for age-related adaptive processes during motor tasks. This notion
is supported by recent findings from Michely et al. (2018), also for
button-pressing tasks, demonstrating a reverse U-shaped trajectory in
PMC influences on the primary motor cortex (M1) with age. The authors
argue that this trajectory could reflect reliance on this PMC-M1
communication as an initially useful resource that eventually breaks
down at later stages of aging. This study also demonstrated greater pre-
frontal influences on the motor system in older adults, which is in
agreement with functional MRI results showing increased prefrontal
cortex (PFC) activation during motor tasks with advancing age (Heu-
ninckx et al., 2008).

A critical discussion in the context of these findings is whether such
age-related differences represent compensation - plastic adaptations that
counteract structural, biochemical and/or functional decline, or de-
differentiation - age differences that reflect declines in brain structure-
function relationships with age (Seidler et al., 2010). For the motor
system, it has been argued that greater task-related activation of brain
regions in older adults has a compensatory function (Heuninckx et al.,
2008; Mattay et al., 2002; Seidler et al., 2010), but little attention has
been paid to the function of differences in connectivity. Although the
strict classification of coupling patterns as compensation or
de-differentiation requires interventional approaches - i.e., perturbation
of activity to assess resulting behavioral influences - these roles can be
more informally assessed by considering whether coupling patterns
observed in older adults are associated with task performance and in
which way. Thus, we maintain that the key feature indicating compen-
sation vs. de-differentiation is whether the observed differences are
relevant for task performance; differences that appear to be functionally
relevant likely play a compensatory role, whereas non-functional dif-
ferences are likely to reflect de-differentiation. One previous study
evaluating such functional correlations was not able to find direct re-
lationships between button pressing reaction times and single coupling
parameters, but did show that older subjects with greater net connec-
tivity from PFC-PMC-M1 also had faster reaction time (Michely et al.,
2018) - in support of the compensation hypothesis.

Notably, this and other previous work investigating effective cortical
connectivity in young and/or older adults has focused exclusively on
hand and finger movements (Chen et al., 2010; Herz et al., 2012; Loehrer
et al., 2016; Michely et al., 2018), despite the broad behavioral impor-
tance of voluntary ankle muscle control. Collectively, little is known
about how the control of lower extremities may or may not differ from
control of the upper extremities in humans.

Animal studies indicate that specific control systems exist for reach-
ing movements and locomotion, albeit at the spinal level (Alstermark and
Isa, 2012; Alstermark and Kümmel, 1986). On the other hand, it has also
been hypothesized from animal studies that cortico-spinal mechanisms
controlling reaching movements may have evolved from those control-
ling precise modification of locomotion (Georgopoulos and Grillner,
1989), and consequently that common circuits underlie these functions.
This hypothesis is supported by recent work performed on cats, which
suggests that cortical cells exhibit similar patterns of activity during
reaching and locomotion (Yakovenko and Drew, 2015).

Studies investigating the cortico-spinal system in humans have sug-
gested differing degrees of cortical influence on muscle activity, where
distal muscles displaying greater precision control may receive a greater
degree of cortical input (Brouwer and Ashby, 1990; Petersen et al., 2003;
2

Ushiyama et al., 2010), but whether these differences extend to quali-
tative and/or quantitative differences in cortico-cortical coupling pat-
terns is not known. Here, we adopt the point of departure that the general
functions of cortical regions are conserved across upper- and lower ex-
tremity movements, but that there may be differences in characteristic
coupling patterns.

Dynamic causal modelling (DCM) is a framework for estimating the
effective connectivity among a set of brain regions (Friston et al., 2003).
DCM uses a realistic (biophysically informed) generative model to infer
plausible explanations for how electrophysiological or functional neu-
roimaging data were generated. Inter- and intra-regional synchronization
of oscillatory activity, as documented using magnetoencephalography or
EEG, is considered an important marker for integration in functional
networks (Lopes da Silva, 2013). Alpha/mu oscillations are suggested to
play a role in cortical attention modulation during movement
(Pfurtscheller and Lopes da Silva, 1999), whereas beta band oscillations
during steady contraction may act to stabilize current motor output
(Baker et al., 1999). Gamma band oscillations are also apparent in motor
regions and are thought to direct changes in motor output (Leuthardt
et al., 2004; Rickert et al., 2005).

In this study, we used DCM for cross-spectral densities (CSD) to model
a network comprising the PMC, M1, PFC, and posterior parietal cortex
(PPC) based on EEG responses recorded from younger and older adults
during a dorsiflexion force-tracing task. The role of the PPC in the
network investigated is argued later in the methods section (2.3.5.
network regions). To quantify commonalities and differences in network
coupling strengths among participants, we adopted the Parametric
Empirical Bayes (PEB) framework (Friston et al., 2016; Zeidman et al.,
2019). Using these methods, we investigated (1) how cortico-cortical
coupling within our network was related to precision in force produc-
tion; (2) how coupling strength differed between young and older par-
ticipants; and (3) whether any associations between precision and
coupling strength differed between the two age groups.

We maintained a general hypothesis that reduced force control in
older adults would be associated with cortico-cortical connection
strength within our network comprising M1, PMC, PPC, and PFC, and
that age differences would reflect connection-specific changes rather
than a global scaling of connectivity. We also hypothesized that con-
nectivity patterns in older adults would support the compensation hy-
pothesis, i.e., that differences in coupling patterns observed in older
adults would be relevant for (correlated with) task performance.

2. Methods

2.1. Participants

Fifteen younger (mean: 22.1 � 1.7, range 20–26 yr; 8 female) and
fifteen older adults (mean: 68.3 � 2.7, range 65–73 yr; 8 female) with no
reported neurological or neuromuscular disorders and Mini Mental State
Exam (MMSE) scores � 26 were recruited for this study by convenience
sampling. Twenty-one participants were right leg dominant, 2 were left
leg dominant, and 7 were equally right- and left leg dominant (Waterloo
Footedness Questionnaire; Elias and Bryden, 1998). The distribution of
footedness was comparable between the two age groups (Right/Left/
Both; young: 11/1/3, older: 10/1/4).

All participants provided written, informed consent prior to experi-
ments, and the study was approved by the ethics committee for the
Capital Region of Denmark (approval number H-16021214). Experi-
ments were conducted in accordance with the Declaration of Helsinki.
Some of the data from this study have been previously published in a
paper investigating cortico-muscular coherence between the scalp EEG
and electromyographic recordings (Spedden et al., 2018). Participants
also performed other motor tasks during the same experiments which are
reported elsewhere (Spedden et al., 2019).
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2.2. Force tracing task

Participants performed a simple force tracing task, challenging pre-
cision in ankle muscle torque production (Fig. 1B; Spedden et al., 2018).
While participants were seated in a chair with their left leg fastened to a
force pedal with a built-in strain gauge, the leg was positioned to 120�

dorsiflexion at the ankle, 115� flexion at the knee, and 90� flexion at the
hip. Participants initially performed three attempts at a maximal volun-
tary dorsiflexion contraction (MVC). The peak torque attained across
these attempts was used to calculate 10% MVC as the target level for the
tracing task.

The goal of the force tracing task was to maintain the target level as
precisely as possible for 2 min. Participants were aided by a projection of
the target level (shown as a constant horizontal line) as well as their
actual torque production (shown as a real-time trace) onto the wall in
front of them (screen size 125 cm by 167 cm). Task performance was
assessed based on the root mean square (RMS) error, i.e., the deviation of
actual torque from the target level over the 2 min. RMS values were first
log transformed to normalize their distribution, and resulting normality
was confirmed by visual inspection of histograms. RMS values were then
multiplied by �1 to render their interpretation more straightforward,
such that higher values corresponded to better performance (greater
precision). Age-group differences in log-transformed task performance
were tested using an unpaired t-test.
2.3. EEG

2.3.1. Recording
Participants were fitted with an EEG cap accommodating 64 active

electrodes (BioSemi, Amsterdam, The Netherlands) positioned according
to the 10–20 system. Signals were recorded using ActiView software
(v6.05) with a sampling frequency of 2048 Hz. Common mode sense and
driven right leg electrodes served as the online reference as per BioSemi
design. Before recordings, participants were reminded to relax face and
neck muscles to minimize signal artifacts. We also monitored EEG signals
during recordings to ensure that electrode offset was maintained below
25 μV. Signals were recorded continuously for ~2 min.

2.3.2. Pre-processing
EEG data was pre-processed using EEGlab software (v14.0.0) in

MATLAB (vR2016b). EEG signals were visually inspected with the aim of
3

identifying and removing noisy channels before signals were re-
referenced to an average reference. Signals were then band-pass
filtered from 0.5 to 48 Hz and down-sampled to 256 Hz. Periods of
marked, high-amplitude deviations (e.g. from strong muscle artifacts or
periodically loose electrodes) were also removed. Independent compo-
nents analysis decomposition was then performed using the runica al-
gorithm, and components displaying topological and spectral qualities
indicating eye blinks and saccades were removed (Chaumon et al., 2015).
Finally, removed channels were interpolated using the standard spherical
splines approach. Further analysis was performed in SPM12 (r7487). EEG
signals were segmented into 1-s epochs, resulting in 116–125 epochs per
participant, and channel coordinates were transformed into corre-
sponding coordinates in MNI space.

2.3.3. Dynamic causal modelling
Dynamic causal modelling (DCM) is a method for inferring the

effective connectivity between a set of brain regions from electrophysi-
ological responses (Kiebel et al., 2008). Here, we used DCM for CSD,
designed to describe steady-state network dynamics (Friston et al., 2012;
Moran et al., 2009). DCM for CSD explains complex cross-spectra as
generated by a network of dynamically coupled sources, where each
source is represented by a neural mass model (Moran et al., 2013). The
foundation of this DCM is a set of differential equations that characterize
the response of populations of neurons in each source to endogenous and
exogenous input. These equations are augmented with a spatial forward
model to describe how responses of neuronal populations are translated
into EEG recordings. This generative model thus attempts to describe the
dynamics of hidden states - interactions between neuronal populations -
and how these states effectuate the observed CSDs.

Bayesian estimation (inversion) of the full spatio-temporal DCM using
the Variational Laplace procedure (Friston et al., 2007) provides the
posterior distribution of model parameters that are obtained through
maximizing the model’s negative variational free energy, i.e. accuracy
minus complexity (penalizing deviations from priors). Our primary pa-
rameters of interest in this study are extrinsic connection strengths, i.e.,
connections between network regions.

2.3.4. Neural mass model
In DCM for EEG, source activity can be represented by different

neurobiologically informed neuronal population models (Moran et al.,
2013). We adopted the convolution-based local field potential (LFP)
Fig. 1. Methods overview. Effective connectiv-
ity in a uni-hemispheric network for the contra-
lateral hemisphere comprising the dorsolateral
frontal cortex (DLPFC), the foot area of the pri-
mary motor cortex (M1-FOOT) and dorsal pre-
motor cortex (PMd), and the superior parietal
gyrus (SPG) (A) was inferred using dynamic
causal modelling of EEG auto- and cross-spectral
densities (CSDs) during a force tracing task
using the left ankle muscles (B). Activity in each
source was described using the local field poten-
tial (LFP) neural mass model (C) and passed
through lead fields to generate auto- and cross-
spectra for principal EEG modes. We investi-
gated whether network parameters differed in
older and younger adults and were related to
precision during the force tracing task (D). Dotted
lines in C indicate inhibitory connections. * in-
dicates p < 0.05. AU, arbitrary units.
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neural mass model, which describes source activity as the result of in-
teractions between populations of inhibitory interneurons, excitatory
input cells, and excitatory pyramidal cells, inspired by the laminar
structure of the cortex (Jansen and Rit, 1995). Neuronal innovations
enter the network through the population of excitatory input cells
(Moran et al., 2009). Our choice of the LFP neural mass model was
motivated by the ‘minimal model approach’, i.e., we chose a simpler
neural mass model allowing access to the parameters of interest, namely
connection strengths between sources (Moran et al., 2013). Fig. 1C il-
lustrates the LFP model. Each hidden state parameterizes the firing rate
of a neuronal population and depends on the average pre-synaptic inputs,
post-synaptic membrane potential, and constants describing biophysical
membrane properties. Forward connections between network regions
can be interpreted as implementing a strong driving effect, whereas
backward connections have more modulatory effects on their target
populations. For a full mathematical description, we refer to Moran et al.
(2013).

2.3.5. Network regions
In the DCM for EEG framework, network architecture is determined a

priori. Our full hypothesized network comprised a uni-hemispheric
network for the contralateral hemisphere containing the foot area of
M1 and the dorsal PMC (PMd), the superior parietal gyrus (SPG), and
dorsolateral frontal cortex (DLPFC). The choice of these regions was
carefully motivated based on previous fMRI studies of ankle movements
(Dobkin et al., 2004; Francis et al., 2009; Heuninckx et al., 2008; Yoon
et al., 2014). Across tasks involving visually cued or guided (Dobkin
et al., 2004; Francis et al., 2009; Yoon et al., 2014) and challenging
cyclical (Heuninckx et al., 2008) ankle movements, these studies showed
that a core motor network involving M1, PMC and supplementary motor
area (SMA) was activated. For our network, we chose to include M1 and
PMC, but omitted SMA on the grounds that it is thought to play a more
central role in self-generated movement, in contrast to the more promi-
nent role of PMC in externally-guided movement (Debaere et al., 2003).
Also, the proximity of SMA to the foot area of M1 would likely make it
difficult to distinguish between the two areas reliably. Some of these
studies also demonstrated activation in prefrontal areas (Dobkin et al.,
2004; Francis et al., 2009; Heuninckx et al., 2008), and results from one
of these studies also indicated greater, compensatory PFC activation in
older adults (Heuninckx et al., 2008). Thus, we also included influences
from the DLPFC on the core motor circuit in our network. Finally, we
wanted to include a posterior parietal region to account for sensorimotor
interactions related to the use of visual and proprioceptive information to
guide motor behavior. Prior work on cyclical and visually guided ankle
movements has indeed demonstrated PPC activation (Christensen et al.,
2007; Heuninckx et al., 2008; Yoon et al., 2014), so we also included the
SPG region in our network.

The full DCM model thus included forward connections from SPG to
PMd; DLPFC to PMd; and PMd to M1; and backward connections from
PMd to SPG; PMd to DLPFC; and M1 to PMd (Felleman and Van Essen,
1991) (Fig. 1A). Altogether, we regarded this network as the optimal
compromise between selecting the simplest (limiting the number of
model parameters) and ostensibly most relevant network for the task. We
Table 1
Prior coordinates for source locations.

Region MNI coordinates (mm)

Right M1-FOOT 4 -26 72
Right SPG 18 -62 56
Right DLPFC 30 46 18
Right PMd 52 2 46

M1-FOOT, primary motor cortex, foot area; SPG, superior parietal
gyrus; DLPFC, dorsolateral frontal cortex; PMd; dorsal premotor
cortex. Coordinates are from Francis et al. (2009) and Heuninckx
et al. (2008).
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used MNI coordinates for our regions of interest reported in previous
fMRI studies (Francis et al., 2009; Heuninckx et al., 2008) (Table 1).
Brain network figures were generated using BrainNetViewer (Xia et al.,
2013).

2.3.6. Spatial forward model
Inverting a DCM for CSD subsumes inverting a classical spatial for-

ward model to map how source activity is translated into predicted EEG
data. We used the default SPM forward model in which source activity is
modelled as being distributed locally within a cortical area, which ren-
ders the spatial parameters of the DCM linear (Daunizeau et al., 2009).
Our source space was modelled using SPM’s template head based on the
MNI brain. The forward model was constructed using the boundary
element method (BEM).

2.3.7. Spectral estimates
Sensor level PSDs in relation to age group and performance are

summarized in Figs. S-1 and S-2 in Supplementary Material (S-A, Ap-
pendix A).

The features to be predicted by this DCMwere auto- and cross-spectra
between the 8 first principal (eigen)modes of EEG channel mixtures.
These principal modes were used to reduce the dimensionality of the
data. Cross-spectral densities were computed using Bayesian multivariate
autoregressive modelling (Penny and Roberts, 2002) with the default
model order of 8 (Moran et al., 2009). We chose a broad frequency range
from 4 to 48 Hz to account for alpha, beta, and low gamma activity (van
Wijk et al., 2012).

After encountering local minima during model inversion, we adjusted
the hyperprior for the expected precision of the data (hE ¼ 18) to in-
crease reliance on achieving accurate fits at the expense of prior values.
Also, because our spectra displayed the characteristic alpha and beta
peaks that are present during tonic contraction (van Wijk et al., 2012) -
not conforming to the 1/f assumed by DCM - we set the prior of the neural
innovation to assume a flat spectrum. For all other priors, we used default
settings for which these methods have been validated (Moran et al.,
2009).

2.3.8. Group level analysis using Bayesian model reduction and parametric
empirical Bayes

After estimating all connectivity parameters of interest (‘full’ DCMs)
for each participant, we used the PEB framework (Friston et al., 2016;
Zeidman et al., 2019) to characterize commonalities between subjects in
network connection strengths, as well as differences due to age-group,
task performance, and interaction between age-group and performance.
A notable advantage of this framework, as opposed to classical ANOVA, is
that it takes not only the mean, but also the uncertainty of individual
connection strengths into account. This entails that participants with
more uncertain parameter estimates will be down-weighted, while par-
ticipants with more precise estimates receive greater influence (Zeidman
et al., 2019).

The PEB approach involves (1) estimating group level parameters
using a general linear model (GLM) that divides inter-subject variability
into regressor effects and unexplained random effects, followed by (2)
comparison of different combinations of these parameters to identify
those that best explain commonalities and differences in connectivity due
to age group and performance (Bayesian model comparison).

To do this, we used an exhaustive comparison of all possible GLMs
where one or more second-level parameters were turned off to prune
away parameters that did not contribute to the model evidence (Bayesian
Model Reduction, BMR). Model evidence is also quantified at the second
level as negative variational free energy, which here is the sum of DCM
accuracies for all participants minus complexity due to fitting both the
DCMs and the GLM. The automatic search was performed under the
assumption that all reduced models were equally probable and that the
full DCM only contained physiologically plausible parameters (Zeidman
et al., 2019). Finally, we calculated a Bayesian Model Average (BMA)



Fig. 2. Model predictions. Dynamic causal model (DCM)-predicted and
observed auto- and cross spectra for the first 4 principal eigenmodes of EEG
channel mixtures for a single exemplar participant. Mode 1 to 1, 2 to 2, etc. are
auto-spectra while mode 1 to 2, 2 to 3, etc. are cross-spectra.
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over the GLMs from the final iteration of the search, in which parameters
were weighted by the models’ posterior probabilities.

We used SPM’s default prior values for inter-subject variability and
second level parameters and took only the extrinsic connectivity values
(i.e., forward and backward connections between network regions) to the
second level, as we were only interested in the effect of regressors (i.e.,
age group; task performance and interactions between age group and task
performance) on these parameters.

Thus, we report as our main outcomes: mean connection strengths,
their uncertainties, and probabilities across all participants; differences
in connectivity due to age-group; relationships between connectivity and
task performance; and relationships between connectivity and task per-
formance that differ by age-group (interactions). These interpretations
were enabled by mean-centering regressors before entering them into the
GLM. Results from this analysis are reported as absolute effect size in
relation to the posterior probability of the effect.

We thresholded our results to include those with >95% posterior
probability for models with vs. without the parameter based on their free
energy, because this posterior probability is approximately equal to a
Bayes Factor of 20 (log Bayes Factor 3), which constitutes ‘strong’ evi-
dence (Kass and Raftery, 1995).

In scatter plots illustrating associations between task performance
and connectivity strength, we used updated DCM values where (log-
scaling) parameters had been re-evaluated using the group average
connection strengths as priors to obtain the most robust estimates
(Zeidman et al., 2019).

The whole data analysis pipeline including EEGlab and SPM functions
is further detailed in the Supplementary Material (S–B, Appendix A).

3. Results

3.1. Task performance

A comparison of task performance between the two age-groups
revealed that precision was lower for the older than for the younger
group (t28 ¼ �2.193, p ¼ 0.037, Fig. 1D), indicating less accuracy in
dorsiflexion force production in older participants (as previously re-
ported for these participants in Spedden et al., 2018). The effect of
footedness on task performance was considered using a Kruskal-Wallis
test, which indicated no significant differences between right, left, and
equally right and left footed participants (Chi square ¼ 2.94, p ¼ 0.230,
dftotal ¼ 29).

3.2. EEG spectra and dynamic causal model fits

The principal modes in our EEG data showed auto- and cross spectra
often containing one or more marked peaks in alpha and beta bands.
Fig. 2 shows exemplar spectra and predictions from the DCM inversion
from a single participant’s data. As illustrated, the DCMs were able to
capture the most prominent spectral elements. However, more intricate
spectra with multiple features proved more challenging to fit, given that
secondary peaks were sometimes neglected by the models (e.g. mode 4 to
2 in Fig. 2). Full DCMs were successfully fitted for all 30 participants
without indications of early convergence. Mean variance explained by
the fitted DCMs was 93.5% (range 76.8–98.1%), which suggests that the
impact of the DCMs not always capturing the smaller peaks was likely
minor.

3.3. Parametric empirical Bayes and Bayesian Model Reduction

Using PEB, we estimated extrinsic connectivity strengths and their
uncertainties at the second (group) level to determine commonalities
between all participants, effects of age-group, effects of performance, and
age-group performance interactions. As we did not have strong hypoth-
eses regarding precisely where in our network these effects would be
expressed, we used BMR to prune away connections that did not
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contribute to the model evidence, followed by BMA to compute a
weighted average of the parameters in the final BMR iteration. Fig. 3
shows this BMA of group-level estimates of network connection
strengths, their uncertainties, and posterior probabilities thresholded for
>95% posterior probability.

3.3.1. Commonalities
The BMA of parameters relating to commonalities (Fig. 3A) indicated

that 5 out of the 6 DCM connections were conserved across subjects,
exhibiting a probable, non-zero group mean. However, the backward
connection from M1 to PMd showed a group mean of zero when
considering all participants together. The commonality parameter esti-
mates indicate the average effect over all participants, irrespective of



Fig. 3. Posterior parameter estimates. Bar plots are thresholded for parameters >95% posterior probability (Pp). Purple arrows in brain figures indicate connection
parameters exhibiting Pp > 95%. SPG, superior parietal gyrus; DLPFC, dorsolateral frontal cortex; PMd, dorsal premotor cortex; M1/M1-FOOT, foot area of primary
motor cortex.
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group membership, thus encoding what is common to all subjects. The
negative signs here are due to the procedure of parameterizing connec-
tivity values in terms of log-scaling parameters. Negative values indicate
that the estimated connectivity is downscaled relative to the prior mean.

3.3.2. Age-group
Fig. 3B shows a probable effect of age-group on the backward

connection from M1 to PMd. The negative value of this parameter in-
dicates that the strength of this connection was weaker in older than in
younger participants. When we plotted individual connectivity values
(unitless log-scaling parameters) for each age-group (see Fig. 4A), it
became clear that the mean value of zero for this parameter across all
participants was the result of connectivity values for each age group
roughly positioned on each side of zero. No other effects of age-group on
6

connectivity were present thresholded at > 95% posterior probability.

3.3.3. Task performance
We also detected an effect of performance (precision) on the back-

ward connection from M1 to PMd. The negative sign of this estimate
reflects that stronger M1-PMd connectivity was associated with worse
performance across all participants. Fig. 4A shows M1 to PMd connec-
tivity values plotted as a function of performance and by age group,
illustrating two interesting components of this relationship: an associa-
tion between lower coupling strength and better performance; and lower
coupling strength in older than younger participants. In addition, a non-
trivial effect of performance on the forward connection from PMd to M1
was present (Fig. 3C), but this effect must be interpreted in light of the
interaction detected for this parameter.



Fig. 4. Main effects and interactions.
Relationship between precision in dor-
siflexion force production and M1 to
PMd connectivity (A); PMd to M1 con-
nectivity (B); and PMd to SPG connec-
tivity (C) for the two age groups.
Connectivity strengths are shown as
unitless log-scaling parameters. Error
bars indicate parameter estimate un-
certainties. SPG, superior parietal gyrus;
DLPFC, dorsolateral frontal cortex; PMd,
dorsal premotor cortex; M1/M1-FOOT,
foot area of primary motor cortex; AU,
arbitrary units.
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3.3.4. Age-group performance interactions
The forward PMd to M1 connection also showed a probable effect of

age-group performance interaction (Fig. 3D). Fig. 4B clarifies this inter-
action as different relationships between performance and connectivity
strength for the two age groups; for the young group, stronger connec-
tivity was associated with worse performance, whereas for the older
group, stronger connectivity was associated with better performance.
The strength of the association present in the older group appears quite
remarkable and was apparently driving the effect of performance on this
parameter (Fig. 3C).

Similarly, the backward PMd to SPG connection showed an interac-
tion effect (Fig. 3D), also suggesting distinct associations between per-
formance and connection strength in older and younger participants for
this connection (Fig. 4C). The slope of this association for young partic-
ipants was negative, indicating that participants with stronger PMd to
SPG connectivity also exhibited lower precision. For the older group,
however, the slope of this relationship was largely flat, suggesting a lack
of association.

4. Discussion

Our results showed that the strength of directed interactions between
PMd and M1 were related to precision in ankle force production and
differed in older and younger adults. In the young group, stronger bidi-
rectional M1-PMd coupling was associated with worse precision on the
force tracing task. In the older group, the backward M1 to PMd
connection followed the same pattern (i.e. stronger coupling associated
7

with worse precision), but coupling was weaker than in the young group.
Coupling strength for the forward PMd to M1 connection did not differ
between age groups, but showed the reverse relationship with perfor-
mance for older participants, i.e., stronger PMd-M1 coupling was asso-
ciated with better performance. We suggest that these age-related
differences - in light of their ostensible functionality - reflect compen-
satory mechanisms whereby older adults counteract sensorimotor de-
clines to maintain performance.
4.1. Task performance

As presented in our previous paper (Spedden et al., 2018), we
observed lower precision in dorsiflexion force control in older than in
younger participants. This is in line with prior work demonstrating
age-related decrements in the ability to produce and regulate force
steadily in lower leg muscles (Castronovo et al., 2018; Kouzaki and
Shinohara, 2010). Interestingly, we found that the degree of precision in
ankle force production was dependent on several cortical connectivity
parameters in older and young participants: PMd-M1 interactions, and
feedback influences from PMd to SPG.
4.2. Stronger bidirectional M1-PMCd coupling was associated with worse
precision in young adults

Based on studies of reaching and grasping movements, the PMC is
thought to play a central role in planning and selecting motor responses
based on external cues (Chouinard and Paus, 2006; Roland et al., 1980).
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Premotor communication with the PPC facilitates the use of visual and
proprioceptive information to formulate motor commands, which are
executed through coupling with M1 (Kaas and Stepniewska, 2016). The
PMC also has close connections with the PFC (Tomassini et al., 2007),
which mediate cognitive influences on the selection and modulation of
motor responses. Thus, forward (driving) PMd to M1 connections likely
serve to direct movements based on executive influences and sensory
information, whereas backward (modulatory) M1 to PMd connections
likely provide contextual guidance aiding ongoing adjustments of motor
plans.

We found that the strength of coupling from PMd to M1 and from M1
to PMd was negatively related to force precision for young participants,
i.e., those with weaker coupling performed better. Based on previous
work on the role of these regions in reaching and grasping movements,
this was surprising. Given the putative role of the PMd in using external
cues to guide motor output, we might expect that stronger forward PMd
to M1 coupling would promote better performance. Likewise, stronger
feedback from M1 to PMd might be expected to lead to better perfor-
mance, as updating PMd with information about M1 output could facil-
itate adjustments based on changes in the current state. However, when
considering the nature of the force-tracing task, stronger M1-PMd
coupling may not be advantageous in this context. In this type of
steady state task with stable properties, the need for PMd monitoring of
motor output state may be minimal and may even represent a suboptimal
strategy leading to redundant adjustments in motor output.

In support of this, we also observed a negative association between
performance and PMd-SPG coupling strength in the young group.
Whereas forward communication from SPG to PMd likely codes a spatial
reference frame for the intended movement (at least for reaching and
grasping) (Iacoboni, 2006), the corresponding backward communication
may serve to update sensory integration with contextual information
about developing plans. This negative association may thus also reflect
the type of task we used where online modulations of movement goals
(requiring continuous SPG updating) are unfavorable for precise
performance.

Taken together, these negative associations likely reflect that good
young performers make use of alternative routes of communication for
successful force control. One possible explanation - despite our hypoth-
esis that the force-tracing task would be heavily reliant on guidance from
external cues - is that the sensory monitoring required for this task was
limited, and that younger participants performed the task to a greater
extent based on internal representations. Specifically, it could be the case
that young participants were more reliant on communication within the
so-called ‘intrinsic’ circuit comprising the SMA, basal ganglia and M1,
which has been suggested to control self-generated movements, rather
than the ‘extrinsic’ circuit containing PMC, cerebellum, M1, and parietal
areas, which is thought to control movement guided by external cues
(Goldberg, 1985; Jueptner et al., 1996). Thus, when tracing the force
target, participants may have quickly learned to predict the result of
ankle movements on the torque signal such that movements were
controlled by an internal model - preferentially through the intrinsic
circuit - without a considerable dependency on visual and somatosensory
feedback. In any case, our results suggest that young participants
exhibiting better precision were not reliant on the cortical coupling pa-
rameters included in our network for successful force control.

Another important consideration is whether these negative associa-
tions between coupling strength and performance in the young group
could reflect differences in the control of lower and upper extremities.
Data from our study cannot be used to specifically compare coupling
patterns during hand- and leg-based tasks, so we can only speculate.
Nevertheless, the functional specialization of hand control for reaching
and grasping is in some aspects distinct from the specialization of lower
limbs for standing and walking, which may entail that leg movements are
coordinated by different patterns of effective connectivity - e.g. that the
PMC is less involved in visually guided ankle than hand movements.

On the other hand, there are also important similarities between foot
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and hand control: as is the case for arm and hand movements, foot po-
sition during walking must be fine-tuned based on visual and proprio-
ceptive feedback to avoid obstacles and accommodate changes in terrain.
For example, during the swing phase of walking, the toes typically clear
the ground very precisely with a variability of less than 4 mm (Winter
1987), which may be considered a control challenge on par with the
precision grip of the hand. In addition, the notion of an analogous role for
the PMC in the control of lower extremities is supported by gait studies
demonstrating PMC activation during imagined and real walking tasks,
including paradigms emphasizing precision (Bakker et al., 2008;
Hamacher et al., 2015; Wang et al., 2009). Thus, the negative correla-
tions between PMd-M1 connectivity and performance may primarily
reflect task-specific strategies rather than differences in control of upper-
and lower extremities. Future work comparing coupling parameters
during the same task performedwith hand and ankle muscles is necessary
to clarify these issues.

4.3. Lower feedback coupling from M1 to PMC in older adults

For the feedback connection from M1 to PMd, older participants
followed the pattern observed in younger participants, i.e. stronger
coupling was associated with lower force precision. However, the older
group exhibited lower connectivity strength compared to the young
group for this parameter. A possible interpretation of this difference is
that the weaker coupling observed in older adults represents a compen-
satory mechanism, in light of the finding that weaker coupling was
associated with better performance across groups. If we characterize
compensation based on the functional relevance of the observed de-
viations, then this finding could reflect an adaptive response to maintain
performance in the face of structural, functional and/or biochemical
declines in the sensorimotor system (Goble et al., 2009; Kuehn et al.,
2018; Seidler et al., 2010; Sturnieks et al., 2008). The ostensible weak-
ening of coupling with advancing age may thus be a useful strategy to
improve performance. However, precision in the older group was still
lower than the younger group, suggesting that this strategy was not able
to compensate fully.

Of note, it is evident in Fig. 4 that there were generally greater in-
dividual differences in the older group compared to the younger group.
This is likely the result of differences in rates of aging and thus reflects the
greater biological variation that is commonly observed between older
compared to younger individuals.

4.4. Stronger forward PMd-M1 coupling associated with better
performance in older adults

Although the strength of the forward PMd-M1 coupling did not differ
between age groups, older participants exhibited a strong, positive as-
sociation between coupling strength and precision, in contrast to the
reverse, negative association observed in young participants. This
discrepancy suggests age-related differences in the reliance on PMd-M1
communication for task performance. Better performers in the older
group appear to have capitalized on PMd-M1 influences to achieve good
performance, which, in conjunction with a corresponding attenuation of
feedback from M1 to PMd, may be a reflection of greater dependency on
feedforward communication between these regions. This might be un-
derstood in terms of the predictive coding framework; it has been sug-
gested that the aging brain becomes progressively optimized to generate
increasingly accurate predictions of the environment (Moran et al.,
2014). These authors discuss that the greater sensory experience that
older adults possess may contribute to the refinement of generative
models, more efficient predictive control and thus reduced reliance on
feedback communication. Note however that we have only observed this
pattern for PMd-M1 communication, and not in other regions in our
network. Another possible interpretation is that an increased reliance on
influences from PMd on M1 could reflect greater attention directed to-
wards task performance in good older performers (Boussaoud, 2001). We



M.E. Spedden et al. NeuroImage 218 (2020) 116982
argue in any case that this coupling pattern may also represent a
compensatory mechanism, at least for the good older performers able to
make use of this connectivity to support performance. Taken together,
our results suggest that PMd-M1 communication becomes more relevant
for precision control of the ankle joint with aging.

4.5. The PMC and PFC as compensatory resources

Of interest, the most robust effects of age group and performance
were centered around M1-PMd interactions. The PMC has been previ-
ously highlighted as a key region for adaptive processes in the motor
system, particularly in the case of reduced M1 function. Behaviorally
meaningful adaptations have been demonstrated in PMC after M1 lesions
in animals and humans (Dancause, 2006) and non-invasive brain stim-
ulation suppressing M1 excitability (Schmidt et al., 2013), indicating that
functional compensation may depend on PMC activity. Further, other
studies have demonstrated increases in PMC activation during motor
tasks (Heuninckx et al., 2005; Rowe et al., 2006; Ward et al., 2008), and
some of this work has additionally suggested that this activation may
become increasingly useful with aging (Ward et al., 2008). Our results
expand upon this previous work by demonstrating that both forward
driving and backward modulatory PMd-M1 connections exhibit distinct
age-related differences that are directly linked to behavior.

Also of interest, we did not detect any probable effects of age or task
on coupling between the prefrontal and premotor regions. This is
somewhat inconsistent with prior studies indicating that the PFC may be
an important compensatory resource for motor control in older adults
(Heuninckx et al., 2008; Michely et al., 2018; Seidler et al., 2010). The
most obvious explanation for this discrepancy is the difficulty of the task
utilized. Previous work suggests that the reliance on PFC influences in
older adults may first emerge with increasing task difficulty (Heuninckx
et al., 2008), which could mean that for the relatively simple force
tracing task we used, adjustments in coupling between core motor areas
were sufficient for older adults to perform the task.

4.6. The role of descending drive in precision force control

It has been suggested that force fluctuations are a consequence of low
frequency (delta band) oscillations embedded in neural drive to the
active muscles, and that an age-related increase in this oscillatory input
leads to lower force control in older adults (Castronovo et al., 2018;
Lodha and Christou, 2017). Given that the regulation of these oscillations
appears to be supra-spinal in origin (Lodha et al., 2013), the age differ-
ences we observed in PMd-M1 coupling may play a role in modulating
this oscillatory input to motor neuron pools with aging. As both PMd and
M1 have corticospinal projections to the spinal cord (Chouinard and
Paus, 2006), interactions between these regions are in any case
anatomically suited to perturb corticospinal activity and thus affect
descending drive to the spinal motor neuron pools.

4.7. Methodological considerations

There are a few methodological considerations that should be taken
into account when interpreting the results of this study. First, the results
of any DCM analysis are predicated on the models evaluated, which
entails that there may be other equally or more probable models
comprising different regions and connections. We based our model on a
mechanistic hypothesis that a contralateral cortical network is involved
in ankle joint control, so we cannot conclude as to roles of e.g. subcortical
or ipsilateral regions and their connectivity in this task.

Further, because our hypotheses concerned the presence or absence
of particular connections between a set of predefined regions, as opposed
to hypotheses about the presence or absence of the regions themselves,
we only performed model reduction on the group (between-subjects)
level, but not on the within-subjects level. This means that we have
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imposed a strong prior on what we believe to be the most relevant
network, though we find this prior reasonable based on previous work
showing activation in these areas during similar tasks.

Second, we did not include a control condition (e.g. resting state).
Accordingly, we could not make a direct comparison between rest and
task-related coupling patterns. This does not mean, however, that esti-
mating the connection strength during dorsiflexion alone doesn’t reveal
something fundamental about cortical coupling during this task. On the
contrary, that fact that PEB provided parameter estimates with high
posterior probability at the group level tells us that our results reveal a
fundamental aspect of ankle force control. Finally, the cross-sectional
study design we used entails that we can address age-related differ-
ences but not age-related changes in network coupling strength. Thus,
hypotheses based on our findings should be tested in a longitudinal
study.

5. Conclusion

Our results showed that directed cortical interactions between PMd
and M1 were associated with ankle force precision and differed by age
group. For the young group, bidirectional PMd-M1 connection strength
was negatively related to task performance: stronger backward M1-PMd
and forward PMd-M1 coupling was associated with worse precision.
Notably, the older group showed departures from this pattern. For the
PMd to M1 coupling, there were no age group differences in coupling
strength, but within the older group, stronger coupling was associated
with greater precision. For theM1 to PMd coupling, older adults followed
the same pattern as young adults - with stronger coupling accompanied
by worse performance - but coupling strength was lower than in the
young group. We argue that the observed age-related differences in
coupling patterns reflect useful adaptive mechanisms through which
older adults maintain performance in the face of declines in the senso-
rimotor system. These results add to the discussion of the cortical control
of ankle muscles and adaptive plasticity with aging.
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