700 research outputs found

    Long-Lived Neutralino NLSPs

    Full text link
    We investigate the collider signatures of heavy, long-lived, neutral particles that decay to charged particles plus missing energy. Specifically, we focus on the case of a neutralino NLSP decaying to Z and gravitino within the context of General Gauge Mediation. We show that a combination of searches using the inner detector and the muon spectrometer yields a wide range of potential early LHC discoveries for NLSP lifetimes ranging from 10^(-1)-10^5 mm. We further show that events from Z(l+l-) can be used for detailed kinematic reconstruction, leading to accurate determinations of the neutralino mass and lifetime. In particular, we examine the prospects for detailed event study at ATLAS using the ECAL (making use of its timing and pointing capabilities) together with the TRT, or using the muon spectrometer alone. Finally, we also demonstrate that there is a region in parameter space where the Tevatron could potentially discover new physics in the delayed Z(l+l-)+MET channel. While our discussion centers on gauge mediation, many of the results apply to any scenario with a long-lived neutral particle decaying to charged particles.Comment: 31 pages, 12 figure

    Searches for Long Lived Neutral Particles

    Full text link
    An intriguing possibility for TeV scale physics is the existence of neutral long lived particles (LOLIPs) that subsequently decay into SM states. Such particles are many cases indistinguishable from missing transverse energy (MET) at colliders. We propose new methods to search for these particles using neutrino telescopes. We study their detection prospects, assuming production either at the LHC or through dark matter (DM) annihilations in the Sun and the Earth. We find that the sensitivity for LOLIPs produced at the LHC is limited by luminosity and detection energy thresholds. On the other hand, in the case of DM annihilation into LOLIPs, the sensitivity of neutrino telescopes is promising and may extend beyond the reach of upcoming direct detection experiments. In the context of low scale hidden sectors weakly coupled to the SM, such indirect searches allow to probe couplings as small as 10^-15.Comment: 22 pages, 6 figure

    Searching for the light dark gauge boson in GeV-scale experiments

    Full text link
    We study current constraints and search prospects for a GeV scale vector boson at a range of low energy experiments. It couples to the Standard Model charged particles with a strength <= 10^-3 to 10^-4 of that of the photon. The possibility of such a particle mediating dark matter self-interactions has received much attention recently. We consider searches at low energy high luminosity colliders, meson decays, and fixed target experiments. Based on available data, searches both at colliders and in meson decays can discover or exclude such a scenario if the coupling strength is on the larger side. We emphasize that a dedicated fixed target experiment has a much better potential in searching for such a gauge boson, and outline the desired properties of such an experiment. Two different optimal designs should be implemented to cover the range of coupling strength 10^-3 to 10^-5, and < 10^-5 of the photon, respectively. We also briefly comment on other possible ways of searching for such a gauge boson.Comment: 33 pages, 5 figures; v2: corrected discussion of Upsilon decays, updates to discussion of fixed-target experiments and QED constraints, numerous minor changes, references added; v3: typo corrected relative to the JHEP published versio

    Abelian Hidden Sectors at a GeV

    Get PDF
    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1)_x gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.Comment: 43 pages, no figures; v2: to match JHEP versio

    The Status of GMSB After 1/fb at the LHC

    Full text link
    We thoroughly investigate the current status of supersymmetry in light of the latest searches at the LHC, using General Gauge Mediation (GGM) as a well-motivated signature generator that leads to many different simplified models. We consider all possible promptly-decaying NLSPs in GGM, and by carefully reinterpreting the existing LHC searches, we derive limits on both colored and electroweak SUSY production. Overall, the coverage of GGM parameter space is quite good, but much discovery potential still remains even at 7 TeV. We identify several regions of parameter space where the current searches are the weakest, typically in models with electroweak production, third generation sfermions or squeezed spectra, and we suggest how ATLAS and CMS might modify their search strategies given the understanding of GMSB at 1/fb. In particular, we propose the use of leptonic MT2M_{T2} to suppress ttˉt{\bar t} backgrounds. Because we express our results in terms of simplified models, they have broader applicability beyond the GGM framework, and give a global view of the current LHC reach. Our results on 3rd generation squark NLSPs in particular can be viewed as setting direct limits on naturalness.Comment: 44 pages, refs added, typos fixed, improved MC statistics in fig 1

    Prompt Decays of General Neutralino NLSPs at the Tevatron

    Full text link
    Recent theoretical developments have shown that gauge mediation has a much larger parameter space of possible spectra and mixings than previously considered. Motivated by this, we explore the collider phenomenology of gauge mediation models where a general neutralino is the lightest MSSM superpartner (the NLSP), focusing on the potential reach from existing and future Tevatron searches. Promptly decaying general neutralino NLSPs can give rise to final states involving missing energy plus photons, Zs, Ws and/or Higgses. We survey the final states and determine those where the Tevatron should have the most sensitivity. We then estimate the reach of existing Tevatron searches in these final states and discuss new searches (or optimizations of existing ones) that should improve the reach. Finally we comment on the potential for discovery at the LHC.Comment: 41 pages, minor changes, added refs and discussion of previous literatur

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table

    Initial determination of the spins of the gluino and squarks at LHC

    Full text link
    In principle particle spins can be measured from their production cross sections once their mass is approximately known. The method works in practice because spins are quantized and cross sections depend strongly on spins. It can be used to determine, for example, the spin of the top quark. Direct application of this method to supersymmetric theories will have to overcome the challenge of measuring mass at the LHC, which could require high statistics. In this article, we propose a method of measuring the spins of the colored superpatners by combining rate information for several channels and a set of kinematical variables, without directly measuring their masses. We argue that such a method could lead to an early determination of the spin of gluino and squarks. This method can be applied to the measurement of spin of other new physics particles and more general scenarios.Comment: 23 pages, 8 figures, minor change

    Decaying into the Hidden Sector

    Full text link
    The existence of light hidden sectors is an exciting possibility that may be tested in the near future. If DM is allowed to decay into such a hidden sector through GUT suppressed operators, it can accommodate the recent cosmic ray observations without over-producing antiprotons or interfering with the attractive features of the thermal WIMP. Models of this kind are simple to construct, generic and evade all astrophysical bounds. We provide tools for constructing such models and present several distinct examples. The light hidden spectrum and DM couplings can be probed in the near future, by measuring astrophysical photon and neutrino fluxes. These indirect signatures are complimentary to the direct production signals, such as lepton jets, predicted by these models.Comment: 40 pages, 5 figure
    corecore