1,019 research outputs found

    Detecting and Tolerating Byzantine Faults in Database Systems

    Get PDF
    This thesis describes the design, implementation, and evaluation of a replication scheme to handle Byzantine faults in transaction processing database systems. The scheme compares answers from queries and updates on multiple replicas which are off-the-shelf database systems, to provide a single database that is Byzantine fault tolerant. The scheme works when the replicas are homogeneous, but it also allows heterogeneous replication in which replicas come from different vendors. Heterogeneous replicas reduce the impact of bugs and security compromises because they are implemented independently and are thus less likely to suffer correlated failures. A final component of the scheme is a repair mechanism that can correct the state of a faulty replica, ensuring the longevity of the scheme.The main challenge in designing a replication scheme for transaction processingsystems is ensuring that the replicas state does not diverge while allowing a high degree of concurrency. We have developed two novel concurrency control protocols, commit barrier scheduling (CBS) and snapshot epoch scheduling (SES) that provide strong consistency and good performance. The two protocols provide different types of consistency: CBS provides single-copy serializability and SES provides single-copy snapshot isolation. We have implemented both protocols in the context of a replicated SQL database. Our implementation has been tested with production versions of several commercial and open source databases as replicas. Our experiments show a configuration that can tolerate one faulty replica has only a modest performance overhead (about 10-20% for the TPC-C benchmark). Our implementation successfully masks several Byzantine faults observed in practice and we have used it to find a new bug in MySQL

    Applied Analysis of Ionic Polymer Metal-Composite Actuators

    Full text link
    IPMC is a type of smart material called an electroactive polymer Consists of an ionic polymer such as Nafion or Flemion and a conducive metal such as platinum or gold COMSOL multi-physics simulations accurately model the experimental displacement results Optimization performed using the multi-physics model to find the maximum deflection, force, and twisting Using the closed loop control system accurate IPMC tip location can be achieved This control system has been extended to function using a computer mouse as an inpu

    Closed Loop Control of a Cylindrical Tube Type Ionic Polymer Metal Composite (IPMC)

    Full text link
    The goal of this research is to provide a framework for the integration of tube type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. IPMCs are one of the most widely used types of electro-active polymer actuator, due to their low electric driving potential and large deformation range. For this research a tube type IPMC was investigated. This IPMC has a circular cross section with four separate electrodes on its surface and a hole through the middle. The four electrodes allow for biaxial bending and accurate control of the tip location. One of the main advantages of using this type of IPMC is the ability to embed a specific tool and accurately control the tool tip location using the large deflection range of the IPMC. This ability has widespread applications including in the biomedical field for use in active catheter procedures. First, this relatively new type of IPMC is investigated and characterized. The processes and materials used are described and the functional design is explored. Before the modeling process beings the basic functions of the IPMC are investigated. To this end force and displacement experiments are performed to describe the activation of the tube type IPMC. This data will be used later to verify and calibrate the mathematical simulations. Second, a three dimensional multi-physics finite element model is developed using COMSOL 4.3a. This model will automatically couple three physics packages and provide a description of the fluid interactions within the tube type IPMC. This model is then compared against the experimental displacement results to calibrate the simulation. Using this simulation design parameters are declared including, overall diameter, and tool hole size. The performance of the IPMC is then simulated while varying these parameters. Third, an electro-mechanical model of the IPMC is developed. This macroscopic model is used to relate the input voltage to an associated tip deflection. Several model types used for this purpose are tested and discussed. After determining a suitable type a mathematical electro-mechanical model is developed. Using this model several closed loop control systems are proposed. Once a final decision is reached the closed loop control system is implemented in the experimental setup. Several tests are designed to test the effectiveness of the closed loop system and mathematical models. Finally several improvements are made to enhance the users experience using IPMCs as well as incorporating them into conventional devices. To provide a better user interface the experimental control system is extended to allow the user to input controls via a standard computer mouse. This will allow a shorter operator training time and hopefully a wider array of real world uses for IPMCs. Attempts are also made to establish permanent connections to the IPMC. A tube type IPMC is meant to be used as part of a total system. To this end soldered connections to the IPMC are made. One of the main expected applications of tube type IPMCs are as active catheters. In this application the IPMC would be placed in-line with the plastic catheter line. As a proof of concept the IPMC is installed onto the tip of a conventional catheter line

    Development and Validation of a Computational Fluid Dynamics (CFD) Solver for Droplet-Fibre Systems

    Get PDF
    Droplet-fibre interactions are found in many natural and anthropogenic systems. A common industrial example is fibrous filtration - used to capture liquid (e.g. oil) mists. The filters used consist mostly of highly porous arrays of randomly layered fibres. Given the random (complex) nature of these filters, the existing models describing their behaviour are mainly empirical in nature and thus only applicable over a narrow range of parameters and operating conditions. Therefore simulation of these filters using computational fluid dynamics offers a viable alternative to the existing models. In this work we will detail the development of a solver that couples the Lagrangian tracking of particles with a volume-of-fluid (VOF) solver. This solver is built on the existing open-source OpenFOAM CFD libraries, which have been modified to allow the physically accurate modelling of small particles. The solver also models the collection of these particles, where there is a transition from the discrete treatment (as in the Lagrangian tracking of the particles) to the volume-of-fluid treatment. The solver allows the simulation of the motion of small liquid droplets, the capture of these droplets by filter fibres, the coalescence of these captured droplets, into films and the subsequent break up of these films into droplet arrays by Plateau-Rayleigh instability. Also simulated is the movement of these coalesced droplets within the filter, leading to the drainage of oil from the filter.A validation of the fundamental physical mechanisms in the filter was performed, by comparing the simulated conformation of liquid droplets and films on the fibre to Plateau-Rayleigh instability theory. The model showed general agreement with both theory and observations. The simulated capture efficiency was also compared to capture efficiencies predicted by the single fibre efficiency (SFE) theory. A good agreement between the two was found

    Comparison of breathing models for determining flow and particle deposition in the lungs

    Get PDF
    Collection and deposition of particles in the upper airway and lungs is of considerable importance – for example, when studying chronic diseases, or when determining the efficacy of aerosol drug delivery. Modelling of particle deposition usually assumes either constant flow (typically at maximum inspiration), or oscillating flow – ignoring any effects of the lung’s motion. This paper presents a preliminary examination of the effects of ignoring mesh motion when modelling the lungs. Initially, an idealised lung model was created, corresponding to generations 0 to 3 of Weibel’s morphology[14]. Simulations were then made using this geometry for steady flow, oscillating flow, and flow developed by expanding the lung. The expansion of the lung was modelled using a mesh motion library developed by the authors. This model allowed the expansion of the lung to be prescribed. Results from the simulations show significant differences between the three modelling options – relating to both the predicted flow field, and particle deposition sites. Robustness of the moving mesh modelling technique is demonstrated on a high-resolution geometry created from CT scans of a Sprague-Dawley rat model lung

    Simulating Plateau-Rayleigh instability and liquid reentrainment in a flow field using a VOF method

    Get PDF
    Plateau-Rayleigh Instability (PRI) is the well known phenomena of the breakup of a liquid column or cylinder. Such a process is integral to the operation of a range of natural and anthropogenic systems, such as gas-liquid and liquid-liquid separators, fuel cells, the accumulation of dewdrops on spider webs, and many more. Volume Of Fluid (VOF) methods, such as available in OpenFOAM, should be able to accurately resolve PRI in such systems. One such system, in which PRI is integral, is the filtration of oil or water aerosol mists using fibrous filters. In many cases, entrainment (or carryover) of liquid from fibers occurs. The mechanisms behind such entrainment are poorly understood. This work will validate the OpenFOAM VOF against classical PRI theory, both with and without a secondary fluid phase flowing through the system (e.g. air). Furthermore, the work will utilise the validated two-phase VOF solver to examine the phenomena of liquid reentrainment from mist filters

    Darkness in the City of Light: The Great Roundup of 1942 & France’s Role in the Shoah.

    Get PDF
    This thesis explores the incident of the Vel d\u27Hiv Roundup in Paris in July of 1942. It was the largest roundup of Jews in France during WWII, and remains a topic that is still very taboo, but due to books like Sarah\u27s Key and rising interest, other nation\u27s roles in the Holocaust are being explored. The author drawing upon three focuses of study-- majors in History, Religious & Theological Studies, and a French minor-- attempts to show how the Holocaust impacted a nation who\u27s national motto is Liberty, Equality, Brotherhood

    The relationship between pressure drop and liquid saturation in oil-mist filters - Predicting filter saturation using a capillary based model

    Get PDF
    This work details the results of a study into the relationship between pressure drop and liquid saturation in mist (or coalescing) filters. Liquid saturation (clogging) in mist filters is of critical importance as it is directly related to filter efficiency and flow resistance. Experiments were conducted to determine steady-state saturation and pressure drop values in commonly used oleophillic fibrous filter media, using a range of different combinations of face velocity and number of layers of media within the filter element. Several empirical relationships for saturation and pressure drop were derived based on the relationships found. In addition, a capillary-based saturation model has been described and fitted to the experimental data. A good agreement between the model and data was obtained when an empirically fitted term was added. Equations were developed which allow such variables to be determined from known parameters

    Schottky-based band lineups for refractory semiconductors

    Get PDF
    An overview is presented of band alignments for small-lattice parameter, refractory semiconductors. The band alignments are estimated empirically through the use of available Schottky barrier height data, and are compared to theoretically predicted values. Results for tetrahedrally bonded semiconductors with lattice constant values in the range from C through ZnSe are presented. Based on the estimated band alignments and the recently demonstrated p-type dopability of GaN, we propose three novel heterojunction schemes which seek to address inherent difficulties in doping or electrical contact to wide-gap semiconductors such as ZnO, ZnSe, and ZnS
    • …
    corecore