Simulating Plateau-Rayleigh instability and liquid reentrainment in a flow field using a VOF method

Abstract

Plateau-Rayleigh Instability (PRI) is the well known phenomena of the breakup of a liquid column or cylinder. Such a process is integral to the operation of a range of natural and anthropogenic systems, such as gas-liquid and liquid-liquid separators, fuel cells, the accumulation of dewdrops on spider webs, and many more. Volume Of Fluid (VOF) methods, such as available in OpenFOAM, should be able to accurately resolve PRI in such systems. One such system, in which PRI is integral, is the filtration of oil or water aerosol mists using fibrous filters. In many cases, entrainment (or carryover) of liquid from fibers occurs. The mechanisms behind such entrainment are poorly understood. This work will validate the OpenFOAM VOF against classical PRI theory, both with and without a secondary fluid phase flowing through the system (e.g. air). Furthermore, the work will utilise the validated two-phase VOF solver to examine the phenomena of liquid reentrainment from mist filters

    Similar works