125 research outputs found

    A Case of Hyperglycemic Hyperosmolar State Associated with Graves' Hyperthyroidism: A Case Report

    Get PDF
    Hyperglycemic hyperosmolar state (HHS) is an acute complication mostly occurring in elderly type 2 diabetes mellitus (DM). Thyrotoxicosis causes dramatic increase of glycogen degradation and/or gluconeogenesis and enhances breakdown of triglycerides. Thus, in general, it augments glucose intolerance in diabetic patients. A 23-yr-old female patient with Graves' disease and type 2 DM, complying with methimazole and insulin injection, had symptoms of nausea, polyuria and generalized weakness. Her serum glucose and osmolarity were 32.7 mM/L, and 321 mosm/kg, respectively. Thyroid function tests revealed that she had more aggravated hyperthyroid status; 0.01 mU/L TSH and 2.78 pM/L free T3 (reference range, 0.17-4.05, 0.31-0.62, respectively) than when she was discharged two weeks before (0.12 mU/L TSH and 1.41 pM/L free T3). Being diagnosed as HHS and refractory Graves' hyperthyroidism, she was treated successfully with intravenous fluids, insulin and high doses of methimazole (90 mg daily). Here, we described the case of a woman with Graves' disease and type 2 DM developing to HHS

    Quantitative bone marrow lesion size in osteoarthritic knees correlates with cartilage damage and predicts longitudinal cartilage loss

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow lesions (BMLs), common osteoarthritis-related magnetic resonance imaging findings, are associated with osteoarthritis progression and pain. However, there are no articles describing the use of 3-dimensional quantitative assessments to explore the longitudinal relationship between BMLs and hyaline cartilage loss. The purpose of this study was to assess the cross-sectional and longitudinal descriptive characteristics of BMLs with a simple measurement of approximate BML volume, and describe the cross-sectional and longitudinal relationships between BML size and the extent of hyaline cartilage damage.</p> <p>Methods</p> <p>107 participants with baseline and 24-month follow-up magnetic resonance images from a clinical trial were included with symptomatic knee osteoarthritis. An 'index' compartment was identified for each knee defined as the tibiofemoral compartment with greater disease severity. Subsequently, each knee was evaluated in four regions: index femur, index tibia, non-index femur, and non-index tibia. Approximate BML volume, the product of three linear measurements, was calculated for each BML within a region. Cartilage parameters in the index tibia and femur were measured based on manual segmentation.</p> <p>Results</p> <p>BML volume changes by region were: index femur (median [95% confidence interval of the median]) 0.1 cm<sup>3 </sup>(-0.5 to 0.9 cm<sup>3</sup>), index tibia 0.5 cm<sup>3 </sup>(-0.3 to 1.7 cm<sup>3</sup>), non-index femur 0.4 cm<sup>3 </sup>(-0.2 to 1.6 cm<sup>3</sup>), and non-index tibia 0.2 cm<sup>3 </sup>(-0.1 to 1.2 cm<sup>3</sup>). Among 44 knees with full thickness cartilage loss, baseline tibia BML volume correlated with baseline tibia full thickness cartilage lesion area (<it>r </it>= 0.63, <it>p</it>< 0.002) and baseline femur BML volume with longitudinal change in femoral full thickness cartilage lesion area (<it>r </it>= 0.48 <it>p</it>< 0.002).</p> <p>Conclusions</p> <p>Many regions had no or small longitudinal changes in approximate BML volume but some knees experienced large changes. Baseline BML size was associated to longitudinal changes in area of full thickness cartilage loss.</p

    Effects of maternal education on diet, anemia, and iron deficiency in Korean school-aged children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the relationship among socioeconomic status factors, the risk of anemia, and iron deficiency among school-aged children in Korea.</p> <p>Methods</p> <p>The sample consisted of fourth-grade students aged 10 y recruited from nine elementary schools in Korean urban areas in 2008 (<it>n </it>= 717). Anthropometric and blood biochemistry data were obtained for this cross-sectional observational study. Anemia was defined as hemoglobin levels lower than 11.5 g/dl. Iron deficiency was defined as serum iron levels lower than 40 ug/dl. We also obtained data on parental education from questionnaires and on children's diets from 3-day food diaries. Parental education was categorized as low or high, with the latter representing an educational level beyond high school.</p> <p>Results</p> <p>Children with more educated mothers were less likely to develop anemia (<it>P </it>= 0.0324) and iron deficiency (<it>P </it>= 0.0577) than were those with less educated mothers. This group consumed more protein (<it>P </it>= 0.0004) and iron (<it>P </it>= 0.0012) from animal sources than did the children of less educated mothers, as reflected by their greater consumption of meat, poultry, and derivatives (<it>P </it>< 0.0001). Logistic regression analysis revealed a significant inverse relationship between maternal education and the prevalence of anemia (odds ratio: 0.52; 95% confidence interval: 0.32, 0.85).</p> <p>Conclusions</p> <p>As a contributor to socioeconomic status, maternal education is important in reducing the risk of anemia and iron deficiency and in increasing children's consumption of animal food sources.</p

    The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting.</p> <p>The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs) transplantation on the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and bladder and hindlimb functions.</p> <p>Results</p> <p>Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not different among hMSC and two control groups regardless the experimental duration.</p> <p>Conclusion</p> <p>hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of rats but not sufficient to recover locomotor and bladder dysfunction. BDNF and NT-3 levels in the spinal cord and bladder were not increased 28 and 56 days after hMSC transplantation.</p

    A Gene Regulatory Network for Root Epidermis Cell Differentiation in Arabidopsis

    Get PDF
    The root epidermis of Arabidopsis provides an exceptional model for studying the molecular basis of cell fate and differentiation. To obtain a systems-level view of root epidermal cell differentiation, we used a genome-wide transcriptome approach to define and organize a large set of genes into a transcriptional regulatory network. Using cell fate mutants that produce only one of the two epidermal cell types, together with fluorescence-activated cell-sorting to preferentially analyze the root epidermis transcriptome, we identified 1,582 genes differentially expressed in the root-hair or non-hair cell types, including a set of 208 β€œcore” root epidermal genes. The organization of the core genes into a network was accomplished by using 17 distinct root epidermis mutants and 2 hormone treatments to perturb the system and assess the effects on each gene's transcript accumulation. In addition, temporal gene expression information from a developmental time series dataset and predicted gene associations derived from a Bayesian modeling approach were used to aid the positioning of genes within the network. Further, a detailed functional analysis of likely bHLH regulatory genes within the network, including MYC1, bHLH54, bHLH66, and bHLH82, showed that three distinct subfamilies of bHLH proteins participate in root epidermis development in a stage-specific manner. The integration of genetic, genomic, and computational analyses provides a new view of the composition, architecture, and logic of the root epidermal transcriptional network, and it demonstrates the utility of a comprehensive systems approach for dissecting a complex regulatory network
    • …
    corecore