8 research outputs found

    Revisão das dimensões de qualidade dos dados e métodos aplicados na avaliação dos sistemas de informação em saúde

    Get PDF

    Changes on soundscapes reveal impacts of wildfires in the fauna of a Brazilian savanna

    No full text
    Wildfire is a natural process in Brazilian savannas, but human activities alter fire regimes and threaten biodiversity. In this study, we used an ecoacoustics approach to assess fauna responses and recovery after wildfire in a Brazilian savanna. Six passive acoustic monitoring devices were used to record soundscapes before and after a wildfire a at burned and non-burned sites for one year and one month (September 2012 to September 2013). Power Spectral Density and the Acoustic Complexity Index were used to track biophony. Before the fire, the two sites had similar biophonic patterns (PSD: T = 1136, Z = 1.52, P = 0.12; ACI: T = 1117, Z = 1.10, P = 0.26) and soniferous species richness (Site 1 = 52 and Site 2 = 49). However, in the first two sessions of recordings after the fire, biophony became higher at the burned site during the day (PSD: T = 211 and 233; Z = 4.13 and 6.41; ACI: T = 120 and 469, Z = 5.14 and 7.07; all P < 0.00). During the night, biophony was usually higher at the non-burned site until May 2013 (PSD: T = 0 to 453; Z = 3.30 to 5.90; ACI: T = 333 to 491, Z = 3.80 to 4.93; all P < 0.00). Biophony became similar (P = 0.17 to 0.38) at the two sites or higher (P = 0.00 to 0.01) at the burned site from July to September 2013 (PSD: T = 55 to 1167; Z = 1.35 to 6.89; ACI: T = 719 to 1365, Z = 0.87 to 3.04). After the fire, a reduction of soniferous species at the burned site was observed for insects and bats. Both biophonic activity and soniferous species showed a tendency to recover one year after the fire, but there were still less species in September 2013 (non-burned = 43 and burned = 37) when compared to September 2012 at both sites (Site 1 = 52 and Site 2 = 49). Our results showed that changes in the natural regimes of fire can negatively impact the biodiversity and reinforce the need for monitoring protocols and inspection of wildfires. [Abstract copyright: Copyright © 2021 Elsevier B.V. All rights reserved.

    Exercise and possible molecular mechanisms of protection from vascular disease and diabetes : the central role of ROS and nitric oxide

    No full text
    It is now widely accepted that hypertension and endothelial dysfunction are associated with an insulin-resistant state and thus with the development of T2DM (Type 2 diabetes mellitus). Insulin signalling is impaired in target cells and tissues, indicating that common molecular signals are involved. The free radical NO* regulates cell metabolism, insulin signalling and secretion, vascular tone, neurotransmission and immune system function. NO* synthesis is essential for vasodilation, the maintenance of blood pressure and glucose uptake and, thus, if levels of NO* are decreased, insulin resistance and hypertension will result. Decreased blood levels of insulin, increased AngII (angiotensin II), hyperhomocysteinaemia, increased ADMA (asymmetric omega-NG,NG-dimethylarginine) and low plasma L-arginine are all conditions likely to decrease NO* production and which are associated with diabetes and cardiovascular disease. We suggest in the present article that the widely reported beneficial effects of exercise in the improvement of metabolic and cardiovascular health are mediated by enhancing the flux of muscle- and kidney-derived amino acids to pancreatic and vascular endothelial cells aiding the intracellular production of NO*, therefore resulting in normalization of insulin secretion, vascular tone and insulin sensitivity. Exercise may also have an impact on AngII and ADMA signalling and the production of pro- and anti-inflammatory cytokines in muscle, so reducing the progression and development of vascular disease and diabetes. NO* synthesis will be increased during exercise in the vascular endothelial cells so promoting blood flow. We suggest that exercise may promote improvements in health due to positive metabolic and cytokine-mediated effects

    Amino acid supplementation and impact on immune function in the context of exercise

    Get PDF
    Moderate and chronic bouts of exercise may lead to positive metabolic, molecular, and morphological adaptations, improving health. Although exercise training stimulates the production of reactive oxygen species (ROS), their overall intracellular concentration may not reach damaging levels due to enhancement of antioxidant responses. However, inadequate exercise training (i.e., single bout of high-intensity or excessive exercise) may result in oxidative stress, muscle fatigue and muscle injury. Moreover, during the recovery period, impaired immunity has been reported, for example; excessive-inflammation and compensatory immunosuppression. Nutritional supplements, sometimes referred to as immuno-nutrients, may be required to reduce immunosuppression and excessive inflammation. Herein, we discuss the action and the possible targets of key immuno-nutrients such as L-glutamine, L-arginine, branched chain amino acids (BCAA) and whey protein
    corecore