16 research outputs found

    Case report of jelly fish stinging in Bay of Bengal: A report from Bangladesh

    Get PDF
    Introduction: Jelly fish or jellies are the members of the phylum Cnidaria (Coelenterata), consisting of a gelatinous umbrella-shaped bell and trailing tentacles. Sting contains toxic peptide, pbospholipase A and histamine-liberating factor. Jelly fish stinging in Bangladesh is rare. Yet, from a management point of view, this epizoonozis might gain importance given the ever-growing popularity of seaside fishering and tourism. We are presenting a case of jelly fish contact illness in Cox's Bazar Medical College. Case Report: A 30 year old male patient was stung by a jellyfish while tishering in the Bay of Bengal near Teknaf of Cox's Bazar District on 3rd June' 2013. A couple of minutes later urticaria were formed in the contact area accompanied by a bmniug and sore sensation. Within few minutes be developed severe abdominal pain, bodyache and parestbaesia. Immediate decontmninalion was done by patient himself with sea water though ideally it should be with 5% acetic acid. Routine laboratory investigations show no abnormality except non-significant ST elevation in ECG. The patient was managed conservatively with antihistamine, corticosteroids and antibiotics and recovered completely within four days

    Chitosan-modified nanocarriers as carriers for anticancer drug delivery: promises and hurdles

    Get PDF
    With the advent of drug delivery, various polymeric materials are being explored to fabricate numerous nanocarriers. Each polymer is associated with a few characteristics attributes which further facilitate its usage in drug delivery. One such polymer is chitosan (CS), which is extensively employed to deliver a variety of drugs to various targets, especially to cancer cells. The desired properties like biological origin, bio-adhesive, biocompatibility, the scope of chemical modification, biodegradability and controlled drug release make it a highly rough after polymer in pharmaceutical nanotechnology. The present review attempts to compile various chemical modifications on CS and showcase the outcomes of the derived nanocarriers, especially in cancer chemotherapy and drug delivery

    Receptor-based combinatorial nanomedicines: a new hope for cancer management

    No full text
    Nanotechnology-based drug-delivery systems, as an anticancer therapy tool, have shown significant potentials for the diagnosis and treatment of cancer. Recent studies have demonstrated that cancer therapy could be efficiently achieved by combinatorial therapies, approaches using multiple drug regimens for targeting cancers. However, their usages have been limited due to shorter half-lives of chemotherapeutic agents, insignificant targetability to tumor sites and suboptimal levels of co-administered conventional drug moieties. Thus, nanotechnology-based drug-delivery systems with effective targetability have played a crucial role to overcome the limitations and challenges associated with conventional therapies and also have provided greater therapeutic efficacy. Herein, the authors have focused on various drug-incorporated combinatorial nanocarrier systems, the significance of various receptors-associated strategies, and various targeted delivery approaches for chemotherapeutic agents

    Selective targeting of cancer signaling pathways with nanomedicines: challenges and progress

    No full text
    Cancer is one of the leading causes of death worldwide. Regardless of advances in understanding the molecular mechanics of cancer, its treatment is still lacking and the death rates for many forms of the disease remain the same as six decades ago. Although a variety of therapeutic agents and strategies have been reported, these therapies often failed to provide efficient therapy to patients as a consequence of the inability to deliver right and adequate chemotherapeutic agents to the right place. However, the situation has started to revolutionize substantially with the advent of novel โ€˜targetedโ€™ nanocarrier-based cancer therapies. Such therapies hold great potential in cancer management as they are biocompatible, tailored to specific needs, tolerated and deliver enough drugs at the targeted site. Their use also enhances the delivery of chemotherapeutics by improving biodistribution, lowering toxicity, inhibiting degrada- tion and increasing cellular uptake. However, in some instances, nonselective targeting is not enough and the inclusion of a ligand moiety is required to achieve tumor targeting and enhanced drug accumulation at the tumor site. This contemporary review outlines the targeting potential of nanocarriers, highlighting the essentiality of nanoparticles, tumor-associated molecular signaling pathways, and various biological and pathophysiological barriers

    Recent advances in lipid-engineered multifunctional nanophytomedicines for cancer targeting

    No full text
    Cancer is a leading cause of death in many countries around the world. However, the efficacy of current treatments available for variety of cancers is considered to be suboptimal due to the pathophysiological challenges associated with the disease which limits the efficacy of the anticancer drugs. Moreover, the vulnerability towards off-target effects and high toxicity also limits the use of drugs for the treatment of cancers. Besides, the biopharmaceutical challenges like poor water solubility and permeability of the drugs, along with the absence of active targeting capability further decreases the utility of drugs in cancer therapy. As a result of these deficiencies, the current therapeutic strategies face noncompliance to patients for providing meaningful benefits after administration. With the advancements in nanotechnology, there has been a paradigm shift in the modalities for cancer treatment with the help of phytomedicine-based nanosized drug delivery systems coupled with variegated surface-engineering strategies for targeted drug delivery. Among these delivery systems, lipid-based nanoparticles are considered as one of the highly biocompatible, efficient and effective systems extensively explored for anticancer drug delivery. These include diverse range of systems including liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers and supramolecular carriers, which alters pharmacokinetic and biodistribution of the drugs for active targeting to the desired site of action by overcoming the biopharmaceutical challenges associated with anticancer drug delivery. The present review endeavours to provide a comprehensive account on the recent advances in the application of lipid-based nanostructured systems for improving the pharmacotherapeutic performance of phytomedicines for cancer targeting application. [Abstract copyright: Copyright ยฉ 2021 Elsevier B.V. All rights reserved.

    Aegle marmelos Leaf Extract Phytochemical Analysis, Cytotoxicity, In Vitro Antioxidant and Antidiabetic Activities

    No full text
    For many years, Aegle marmelos (A. marmelos) has been used medicinally and as a dietary supplement. Despite this, there are minimal research data on A. marmelos phytochemical properties and pharmacological effects. This study aimed to explore the phytoconstituents, cytotoxicity, glucose uptake, and antioxidant and antidiabetic potential of an alcoholic extract of A. marmelos leaf. The cytotoxicity of A. marmelos in HepG2 cells was tested in vitro, and the results revealed that it has strong cytocompatibility and cytoprotective properties. The extract’s antioxidant activities were investigated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. Antioxidant potential was shown to be quite impressive. The enzymes α-amylase and α-glycosidase were found to be substantially inhibited by A. marmelos, with IC50 values of 46.21 and 42.07 mg/mL, respectively. In HepG2 cells, A. marmelos significantly reduced ROS levels that were elevated due to high glucose and enhanced glucose consumption (p < 0.05). These activities might be due to the enrichment of bioactive phytoconstituents analyzed chromatographically using GC/MS and HPLC. The findings of this study show that A. marmelos could be an effective restorative therapy for diabetes and related diseases

    Aging and Wound Healing of the Skin: A Review of Clinical and Pathophysiological Hallmarks

    Get PDF
    Aging is a universal process that can cause diminished function of organs and various diseases. The most striking consequences of aging can be seen visibly on the skin, which acts as a barrier against various external insults. Aging of the skin consists of intrinsic and extrinsic processes that work in concert and influence each other. Intrinsic aging involves biochemical degenerative processes that gradually takes place with age. Extrinsic aging are biochemical processes driven by external influences that lead to aging. There are significant morphological changes at all levels in aged skin that have a profound effect on the characteristics of the skin. Even though skin is subjected to damage by external insults, it is equipped with a healing capability in order to restore its normal structure and function. However, aging has a significant impact on the skin’s healing function by prolonging the inflammatory phase and increasing the production of reactive oxygen species (ROS). This shifts the healing process towards having more protein degradation, which can lead to chronic wound healing with an abundance of complications

    Development of Natural Polysaccharideโ€“Based Nanoparticles of Berberine to Enhance Oral Bioavailability: Formulation, Optimization, Ex Vivo, and In Vivo Assessment

    No full text
    The phytogenous alkaloid berberine (BBR) has become a potential drug for the treatment of diabetes, hyperlipidemia, and cancer. However, its therapeutic potential is limited because ofpoor intestinal absorption due to its efflux by the P-gp expressed in the intestinal lumen. Therefore, we aimed to design and fabricate a nanoparticulate system for delivery of BBR employing naturally derived biodegradable and biocompatible polymers, mainly chitosan and alginate, to enhance the oral bioavailability of BBR. A chitosan-alginate nanoparticle system loaded with BBR (BNPs) was formulated by ionic gelation method and was optimized by employing a three-factor, three-level Box-Behnken statistical design. BNPs were characterized for various physicochemical properties, ex vivo, and in vivo evaluations. The optimized BNPs were found to be 202.2 ยฑ 4.9 nm in size, with 0.236 ยฑ 0.02 of polydispersity index, zeta potential โˆ’14.8 ยฑ 1.1 mV, and entrapment efficiency of 85.69 ยฑ 2.6%. BNPs showed amorphous nature with no prominent peak in differential scanning calorimetry (DSC) investigation. Similarly, fourier-transform infrared spectroscopy (FTIR) studies did not reveal any interaction between BBR and excipients used. The drug release followed Higuchi kinetics, since these plots demonstrated the highest linearity (R2 = 0.9636), and the mechanism of release was determined to be anomalous or non-Fickian in nature. An ex-vivo gut permeation study showed that BNPs were better internalized into the cells and more highly permeated through the intestine. Furthermore, in vivo pharmacokinetic analysis in female Wistar rats showed a 4.10โˆ’fold increase in the oral bioavailability of BBR from BNPs as compared to BBR suspension. With these findings, we have gained new insight into the effective delivery of poorly soluble and permeable drugs via a chitosan-alginate nanoparticle system to improve the therapeutic performance of an oral nanomedicine
    corecore