5,778 research outputs found

    Buffalo Habitat for Humanity: The Challenges and Prospects of Green Building

    Get PDF
    Habitat for Humanity Buffalo has operated since 1985, and in that time has rehabilitated or built more than 150 homes in the cities of Buffalo and Lackawanna. An affiliate of Habitat for Humanity International (HFHI), Habitat builds affordable housing for qualified low-income people. Once approved, homeowners must put 500 hours of “sweat equity” into Habitat projects, including their homeowner education. In return, they receive a zero-interest mortgage, the proceeds of which pay their property taxes and homeowner’s insurance, as well as support the rehabilitation or construction of more Habitat homes in the Buffalo area

    An approximate viscous shock layer technique for calculating chemically reacting hypersonic flows about blunt-nosed bodies

    Get PDF
    An approximate axisymmetric method was developed which can reliably calculate fully viscous hypersonic flows over blunt nosed bodies. By substituting Maslen's second order pressure expression for the normal momentum equation, a simplified form of the viscous shock layer (VSL) equations is obtained. This approach can solve both the subsonic and supersonic regions of the shock layer without a starting solution for the shock shape. The approach is applicable to perfect gas, equilibrium, and nonequilibrium flowfields. Since the method is fully viscous, the problems associated with a boundary layer solution with an inviscid layer solution are avoided. This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or VSL solvers and would be useful in a preliminary design environment. Problems associated with a previously developed approximate VSL technique are addressed before extending the method to nonequilibrium calculations. Perfect gas (laminar and turbulent), equilibrium, and nonequilibrium solutions were generated for airflows over several analytic body shapes. Surface heat transfer, skin friction, and pressure predictions are comparable to VSL results. In addition, computed heating rates are in good agreement with experimental data. The present technique generates its own shock shape as part of its solution, and therefore could be used to provide more accurate initial shock shapes for higher order procedures which require starting solutions

    The addition of algebraic turbulence modeling to program LAURA

    Get PDF
    The Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is modified to allow the calculation of turbulent flows. This is accomplished using the Cebeci-Smith and Baldwin-Lomax eddy-viscosity models in conjunction with the thin-layer Navier-Stokes options of the program. Turbulent calculations can be performed for both perfect-gas and equilibrium flows. However, a requirement of the models is that the flow be attached. It is seen that for slender bodies, adequate resolution of the boundary-layer gradients may require more cells in the normal direction than a laminar solution, even when grid stretching is employed. Results for axisymmetric and three-dimensional flows are presented. Comparison with experimental data and other numerical results reveal generally good agreement, except in the regions of detached flow

    Towards Zeptosecond-Scale Pulses from X-Ray Free-Electron Lasers

    Get PDF
    The short wavelength and high peak power of the present generation of free-electron lasers (FELs) opens the possibility of ultra-short pulses even surpassing the present (tens to hundreds of attoseconds) capabilities of other light sources - but only if x-ray FELs can be made to generate pulses consisting of just a few optical cycles. For hard x-ray operation (~0.1nm), this corresponds to durations of approximately a single attosecond, and below into the zeptosecond scale. This talk will describe a novel method to generate trains of few-cycle pulses, at GW peak powers, from existing x-ray FEL facilities by using a relatively short 'afterburner'. Such pulses would enhance research opportunity in atomic dynamics and push capability towards the investigation of electronic-nuclear and nuclear dynamics. The corresponding multi-colour spectral output, with a bandwidth envelope increased by up to two orders of magnitudes over SASE, also has potential applications.Comment: Submitted to 35th International Free Electron Laser Conference, New York, 201
    • …
    corecore