91 research outputs found
A description of an automated database comparison program
An interactive FORTRAN computer comparison program designed to automatically locate regions of incongruity between two databases is described. The software, guided by user input parameters, incrementally compares the databases and generates plots of these regions in the databases which do not compare within a specified tolerance. Additionally, tools are provided within the software which enable the user to statistically reduce the number of data points in the databases compared. To facilitate the description of these tools, the procedures used to compare two aerodynamic databases for an F-18A fighter aircraft are detailed
The Competent Lay Christian Counselor
With the increasing popularity of Christian lay counseling programs come questions and concerns about ethical sensitivity to issues of competence. Ten guidelines are proposed for assessing the competence of lay Christian counselors: (1) are they not living in blatant sin, (2) are they and their families spiritually and emotionally healthy, (3) do they understand and use Scripture wisely, (4) do they represent themselves accurately, (5) do they refer when appropriate, (6) do they practice within their level of training, (7) do they request help for their own problems, (8) do they maintain current awareness of pertinent new developments, (9) do they use care when speaking in public, and (10) are they sensitive to human diversity. Implications for the emotional and mental health of the church are discussed
Hypersonic vehicle simulation model: Winged-cone configuration
Aerodynamic, propulsion, and mass models for a generic, horizontal-takeoff, single-stage-to-orbit (SSTO) configuration are presented which are suitable for use in point mass as well as batch and real-time six degree-of-freedom simulations. The simulations can be used to investigate ascent performance issues and to allow research, refinement, and evaluation of integrated guidance/flight/propulsion/thermal control systems, design concepts, and methodologies for SSTO missions. Aerodynamic force and moment coefficients are given as functions of angle of attack, Mach number, and control surface deflections. The model data were estimated by using a subsonic/supersonic panel code and a hypersonic local surface inclination code. Thrust coefficient and engine specific impulse were estimated using a two-dimensional forebody, inlet, nozzle code and a one-dimensional combustor code and are given as functions of Mach number, dynamic pressure, and fuel equivalence ratio. Rigid-body mass moments of inertia and center of gravity location are functions of vehicle weight which is in turn a function of fuel flow
Hypersonic vehicle model and control law development using H(infinity) and micron synthesis
The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems
Hypersonic vehicle control law development using H(infinity) and micron-synthesis
Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis
Effect of aeroelastic-propulsive interactions on flight dynamics of a hypersonic vehicle
The desire to achieve orbit-on-demand access to space with rapid turn-around capability and aircraft-like processing operations has given rise to numerous hypersonic aerospace plane design concepts which would take off horizontally from a conventional runway and employ air-breathing scramjet propulsion systems for acceleration to orbital speeds. Most of these air-breathing hypersonic vehicle concepts incorporate an elongated fuselage forebody to act as the aerodynamic compression surface for a scramjet combustor module. This type of airframe-integrated scramjet propulsion system tends to be highly sensitive to inlet conditions and angle-of-attack perturbations. Furthermore, the basic configuration of the fuselage, with its elongated and tapered forebody, produces relatively low frequency elastic modes which will cause perturbations in the combustor inlet conditions due to the oscillation of the forebody compression surface. The flexibility of the forebody compression surface, together with sensitivity of scramjet propulsion systems to inlet conditions, creates the potential for an unprecedented form of aeroelastic-propulsive interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the longitudinal flight dynamics and/or excite the elastic modes. These propulsive force and moment variations may have an appreciable impact on the performance, guidance, and control of a hypersonic aerospace plane. The objectives of this research are to quantify the magnitudes of propulsive force and moment perturbations resulting from elastic deformation of a representative hypersonic vehicle, and to assess the potential impact of these perturbations on the vehicle's longitudinal flight dynamics
Metal on metal hip resurfacing versus uncemented custom total hip replacement - early results
<p>Abstract</p> <p>Introduction</p> <p>There is no current consensus on the most appropriate prosthesis for treating symptomatic osteoarthritis (OA) of the hip in young, active patients. Modern metal on metal hip resurfacing arthroplasty (HR) has gained popularity as it is theoretically more stable, bone conserving and easier to revise than total hip arthroplasty. Early results of metal on metal resurfacing have been encouraging. We have compared two well matched cohorts of patients with regard to function, pain relief and patient satisfaction.</p> <p>Methods</p> <p>This prospective study compares 2 cohorts of young, active patients treated with hip resurfacing (137 patients, 141 hips) and custom uncemented (CADCAM) stems (134 patients, 141 hips). All procedures were performed by a single surgeon. Outcome measures included Oxford, WOMAC and Harris hip scores as well as an activity score. Statistical analysis was performed using the unpaired student's t-test.</p> <p>Results</p> <p>One hundred and thirty four and 137 patients were included in the hip replacement and resurfacing groups respectively. The mean age of these patients was 54.6 years. The mean duration of follow up for the hip resurfacing group was 19.2 months compared to 13.4 months for the total hip replacement group.</p> <p>Pre operative oxford, Harris and WOMAC scores in the THA group were 41.1, 46.4 and 50.9 respectively while the post operative scores were 14.8, 95.8 and 5.0. In the HR group, pre- operative scores were 37.0, 54.1 and 45.9 respectively compared to 15.0, 96.8 and 6.1 post operatively. The degree of improvement was similar in both groups.</p> <p>Conclusion</p> <p>There was no significant clinical difference between the patients treated with hip resurfacing and total hip arthroplasty in the short term.</p
Children, parents, and pets exercising together (CPET) randomised controlled trial: study rationale, design, and methods
Objectively measured physical activity is low in British children, and declines as childhood progresses. Observational studies suggest that dog-walking might be a useful approach to physical activity promotion in children and adults, but there are no published public health interventions based on dog-walking with children. The Children, Parents, and Pets Exercising Together Study aims to develop and evaluate a theory driven, generalisable, family-based, dog walking intervention for 9-11 year olds
Perceptual and conceptual processing of visual objects across the adult lifespan
Abstract: Making sense of the external world is vital for multiple domains of cognition, and so it is crucial that object recognition is maintained across the lifespan. We investigated age differences in perceptual and conceptual processing of visual objects in a population-derived sample of 85 healthy adults (24–87 years old) by relating measures of object processing to cognition across the lifespan. Magnetoencephalography (MEG) was recorded during a picture naming task to provide a direct measure of neural activity, that is not confounded by age-related vascular changes. Multiple linear regression was used to estimate neural responsivity for each individual, namely the capacity to represent visual or semantic information relating to the pictures. We find that the capacity to represent semantic information is linked to higher naming accuracy, a measure of task-specific performance. In mature adults, the capacity to represent semantic information also correlated with higher levels of fluid intelligence, reflecting domain-general performance. In contrast, the latency of visual processing did not relate to measures of cognition. These results indicate that neural responsivity measures relate to naming accuracy and fluid intelligence. We propose that maintaining neural responsivity in older age confers benefits in task-related and domain-general cognitive processes, supporting the brain maintenance view of healthy cognitive ageing
Distinct components of cardiovascular health are linked with age-related differences in cognitive abilities
Cardiovascular ageing contributes to cognitive impairment. However, the unique and synergistic contributions of multiple cardiovascular factors to cognitive function remain unclear because they are often condensed into a single composite score or examined in isolation. We hypothesized that vascular risk factors, electrocardiographic features and blood pressure indices reveal multiple latent vascular factors, with independent contributions to cognition. In a population-based deep-phenotyping study (n = 708, age 18–88), path analysis revealed three latent vascular factors dissociating the autonomic nervous system response from two components of blood pressure. These three factors made unique and additive contributions to the variability in crystallized and fluid intelligence. The discrepancy in fluid relative to crystallized intelligence, indicative of cognitive decline, was associated with a latent vascular factor predominantly expressing pulse pressure. This suggests that higher pulse pressure is associated with cognitive decline from expected performance. The effect was stronger in older adults. Controlling pulse pressure may help to preserve cognition, particularly in older adults. Our findings highlight the need to better understand the multifactorial nature of vascular aging
- …