187 research outputs found

    Probing the solution structure of the E. coli multidrug transporter MdfA using DEER distance measurements with nitroxide and Gd(III) spin labels

    Get PDF
    Methodological and technological advances in EPR spectroscopy have enabled novel insight into the structural and dynamic aspects of integral membrane proteins. In addition to an extensive toolkit of EPR methods, multiple spin labels have been developed and utilized, among them Gd(III)-chelates which offer high sensitivity at high magnetic fields. Here, we applied a dual labeling approach, employing nitroxide and Gd(III) spin labels, in conjunction with Q-band and W-band double electron-electron resonance (DEER) measurements to characterize the solution structure of the detergent-solubilized multidrug transporter MdfA from E. coli. Our results identify highly flexible regions of MdfA, which may play an important role in its functional dynamics. Comparison of distance distribution of spin label pairs on the periplasm with those calculated using inward- and outward-facing crystal structures of MdfA, show that in detergent micelles, the protein adopts a predominantly outward-facing conformation, although more closed than the crystal structure. The cytoplasmic pairs suggest a small preference to the outward-facing crystal structure, with a somewhat more open conformation than the crystal structure. Parallel DEER measurements with the two types of labels led to similar distance distributions, demonstrating the feasibility of using W-band spectroscopy with a Gd(III) label for investigation of the structural dynamics of membrane proteins.This work was supported by the German-Israeli Foundation for Scientific Research and Development to E.B. (GIF, Grant Number I-1202-248.9/2012), the Clore Center of Biological Physics at the Weizmann Institute of Science to D.G. and E.B., by a grant from the United States - Israel Binational Science Foundation (BSF), Jerusalem, Israel to H.S.M. and E.B., and by a grant from the Minerva Foundation to D.G. E.H.Y is the recipient of a Professor Rahamimoff Travel Grant from the United States - Israel Binational Science Foundation. T.B. acknowledges financial support from the Minerva Foundation. The authors would like to thank Dr. Akiva Feintuch for his support with Gd(III) AWG-DEER measurements

    Small Heat Shock Proteins Potentiate Amyloid Dissolution by Protein Disaggregases from Yeast and Humans

    Get PDF
    The authors define how small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial prion, and then they exploit this knowledge to identify the human amyloid depolymerase

    Detection of Functional Modes in Protein Dynamics

    Get PDF
    Proteins frequently accomplish their biological function by collective atomic motions. Yet the identification of collective motions related to a specific protein function from, e.g., a molecular dynamics trajectory is often non-trivial. Here, we propose a novel technique termed “functional mode analysis” that aims to detect the collective motion that is directly related to a particular protein function. Based on an ensemble of structures, together with an arbitrary “functional quantity” that quantifies the functional state of the protein, the technique detects the collective motion that is maximally correlated to the functional quantity. The functional quantity could, e.g., correspond to a geometric, electrostatic, or chemical observable, or any other variable that is relevant to the function of the protein. In addition, the motion that displays the largest likelihood to induce a substantial change in the functional quantity is estimated from the given protein ensemble. Two different correlation measures are applied: first, the Pearson correlation coefficient that measures linear correlation only; and second, the mutual information that can assess any kind of interdependence. Detecting the maximally correlated motion allows one to derive a model for the functional state in terms of a single collective coordinate. The new approach is illustrated using a number of biomolecules, including a polyalanine-helix, T4 lysozyme, Trp-cage, and leucine-binding protein

    Lipids modulate the conformational dynamics of a secondary multidrug transporter

    Get PDF
    Direct interactions with lipids have emerged as key determinants of the folding, structure and function of membrane proteins, but an understanding of how lipids modulate protein dynamics is still lacking. Here, we systematically explored the effects of lipids on the conformational dynamics of the proton-powered multidrug transporter LmrP from Lactococcus lactis, using the pattern of distances between spin-label pairs previously shown to report on alternating access of the protein. We uncovered, at the molecular level, how the lipid headgroups shape the conformational-energy landscape of the transporter. The model emerging from our data suggests a direct interaction between lipid headgroups and a conserved motif of charged residues that control the conformational equilibrium through an interplay of electrostatic interactions within the protein. Together, our data lay the foundation for a comprehensive model of secondary multidrug transport in lipid bilayers

    Discovering Conformational Sub-States Relevant to Protein Function

    Get PDF
    Background: Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these substates present significant challenges for their identification and characterization. Methods and Findings: To overcome these challenges we have developed a new computational technique, quasianharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions: Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. © 2011 Ramanathan et al

    αA-crystallin R49Cneo mutation influences the architecture of lens fiber cell membranes and causes posterior and nuclear cataracts in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>αA-crystallin (CRYAA/HSPB4), a major component of all vertebrate eye lenses, is a small heat shock protein responsible for maintaining lens transparency. The R49C mutation in the αA-crystallin protein is linked with non-syndromic, hereditary human cataracts in a four-generation Caucasian family.</p> <p>Methods</p> <p>This study describes a mouse cataract model generated by insertion of a neomycin-resistant (neo<sup>r</sup>) gene into an intron of the gene encoding mutant R49C αA-crystallin. Mice carrying the neo<sup>r </sup>gene and wild-type <it>Cryaa </it>were also generated as controls. Heterozygous knock-in mice containing one wild type gene and one mutated gene for αA-crystallin (WT/R49C<sup>neo</sup>) and homozygous knock-in mice containing two mutated genes (R49C<sup>neo</sup>/R49C<sup>neo</sup>) were compared.</p> <p>Results</p> <p>By 3 weeks, WT/R49C<sup>neo </sup>mice exhibited large vacuoles in the cortical region 100 μm from the lens surface, and by 3 months posterior and nuclear cataracts had developed. WT/R49C<sup>neo </sup>mice demonstrated severe posterior cataracts at 9 months of age, with considerable posterior nuclear migration evident in histological sections. R49C<sup>neo</sup>/R49C<sup>neo </sup>mice demonstrated nearly complete lens opacities by 5 months of age. In contrast, R49C mice in which the neo<sup>r </sup>gene was deleted by breeding with CreEIIa mice developed lens abnormalities at birth, suggesting that the neo<sup>r </sup>gene may suppress expression of mutant R49C αA-crystallin protein.</p> <p>Conclusion</p> <p>It is apparent that modification of membrane and cell-cell interactions occurs in the presence of the αA-crystallin mutation and rapidly leads to lens cell pathology <it>in vivo</it>.</p

    De novo high-resolution protein structure determination from sparse spin-labeling EPR data

    No full text
    As many key proteins evade crystallization and remain too large for nuclear magnetic resonance spectroscopy, electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labeling offers an alternative approach for obtaining structural information. Such information must be translated into geometric restraints to be used in computer simulations. Here, distances between spin labels are converted into distance ranges between \u3b2 carbons by using a "motion-on-a-cone" model, and a linear-correlation model links spin-label accessibility to the number of neighboring residues. This approach was tested on T4-lysozyme and \u3b1A-crystallin with the de novo structure prediction algorithm Rosetta. The results demonstrate the feasibility of obtaining highly accurate, atomic-detail models from EPR data by yielding 1.0 \uc5 and 2.6 \uc5 full-atom models, respectively. Distance restraints between amino acids far apart in sequence but close in space are most valuable for structure determination. The approach can be extended to other experimental techniques such as fluorescence spectroscopy, substituted cysteine accessibility method, or mutational studie
    corecore