33 research outputs found

    Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050

    Get PDF
    To meet the 1.5 °C target, methane (CH) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH per unit meat or milk) and absolute (ABS) enteric CH emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies—namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio—decreased CH per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies—namely CH inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds—decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH emissions.We thank the GLOBAL NETWORK project for generating part of the database. The GLOBAL NETWORK project (https://globalresearchalliance.org/research/livestock/collaborative-activities/global-research-project/; accessed 20 June 2020) was a multinational initiative funded by the Joint Programming Initiative on Food Security, Agriculture, and Climate Change and was coordinated by the Feed and Nutrition Network (https://globalresearchalliance.org/research/livestock/networks/feed-nutrition-network/; accessed 20 June 2020) within the Livestock Research Group of the Global Research Alliance on Agricultural GHG (https://globalresearchalliance.org; accessed 20 June 2020). We thank MitiGate, which was part of the Animal Change project funded by the EU under Grant Agreement FP7-266018 for sharing their database with us (http://mitigate.ibers.aber.ac.uk/, accessed 1 July 2017). Part of C.A., A.N.H., and S.C.M.’s time in the early stages of this project was funded by the Kravis Scientific Research Fund (New York) and a gift from Sue and Steve Mandel to the Environmental Defense Fund. Another part of C.A.’s work on this project was supported by the National Program for Scientific Research and Advanced Studies - PROCIENCIA within the framework of the "Project for the Improvement and Expansion of the Services of the National System of Science, Technology and Technological Innovation" (Contract No. 016-2019) and by the German Federal Ministry for Economic Cooperation and Development (issued through Deutsche Gesellschaft für Internationale Zusammenarbei) through the research “Programme of Climate Smart Livestock” (Programme 2017.0119.2). Part of A.N.H.’s work was funded by the US Department of Agriculture (Washington, DC) National Institute of Food and Agriculture Federal Appropriations under Project PEN 04539 and Accession no. 1000803. E.K. was supported by the Sesnon Endowed Chair Fund of the University of California, Davis

    Strategies to Mitigate Enteric Methane Emissions by Ruminants

    No full text
    To meet the 1.5°C target, methane (CH4) from ruminants must be reduced by 11 to 30% of the 2010 level by 2030 and by 24 to 47% by 2050. A meta-analysis identified strategies to decrease product-based [PB; CH4 per unit meat or milk (CH4I)] and absolute (ABS) enteric CH4 emissions while maintaining or increasing animal productivity (AP; weight gain and milk yield). Next the potential of different adoption rates of one PB and/or ABS strategies to contribute to the 1.5°C target was estimated. The database included findings from 425 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies, namely increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio, decreased CH4I by on average 12% and increased AP by a median of 17%. Five ABS strategies, namely CH4 inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds, decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5°C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH4 due to increasing demand. Notably, by 2030 and 2050 low- and middle-income countries may not meet their contribution to the 1.5°C target for this same reason, whereas high income countries could meet their contributions due to only a minor projected increase in enteric CH4 emissions

    SATB2 in Combination With Cytokeratin 20 Identifies Over 95% of all Colorectal Carcinomas

    No full text
    The special AT-rich sequence-binding protein 2 (SATB2), a nuclear matrix-associated transcription factor and epigenetic regulator, was identified as a tissue type-specific protein when screening protein expression patterns in human normal and cancer tissues using an antibody-based proteomics approach. In this respect, the SATB2 protein shows a selective pattern of expression and, within cells of epithelial lineages, SATB2 expression is restricted to glandular cells lining the lower gastrointestinal tract. The expression of SATB2 protein is primarily preserved in cancer cells of colorectal origin, indicating that SATB2 could function as a clinically useful diagnostic marker to distinguish colorectal cancer (CRC) from other types of cancer. The aim of this study was to further explore and validate the specific expression pattern of SATB2 as a clinical biomarker and to compare SATB2 with the well-known cytokeratin 20 (CK20). Immunohistochemistry was used to analyze the extent of SATB2 expression in tissue microarrays with tumors from 9 independent cohorts of patients with primary and metastatic CRCs (n=1882). Our results show that SATB2 is a sensitive and highly specific marker for CRC with distinct positivity in 85% of all CRCs, and that SATB2 and/or CK20 was positive in 97% of CRCs. In conclusion, the specific expression of SATB2 in a large majority of CRCs suggests that SATB2 can be used as an important complementary tool for the differential diagnosis of carcinoma of unknown primary origin
    corecore