13,547 research outputs found
Computer program for calculation of complex chemical equilibrium compositions
Computer program is described for numerical solution of chemical equilibria in complex systems by using nonlinear algebraic equations. Free-energy minimization technique is used
Demographics by depth: spatially explicit life-history dynamics of a protogynous reef fish
Distribution and demographics of the hogfish (Lachnolaimus
maximus) were investigated by using a combined approach of in situ observations and life history analyses. Presence, density, size, age, and size and age at sex change all varied with depth in the eastern Gulf of Mexico. Hogfish (64–774 mm fork length and 0–19 years old) were observed year-round and were most common over complex, natural hard bottom habitat. As depth increased, the presence and density of hogfish decreased, but mean size and age increased. Size at age was smaller nearshore (<30 m). Length and age at sex change of nearshore hogfish were half those of offshore hogfish and were coincident with the minimum legal size limit. Fishing pressure is presumably
greater nearshore and presents a confounding source of increased mortality; however, a strong red tide occurred the year before this study began and likely also affected nearshore demographics. Nevertheless, these data indicate ontogenetic migration and escapement of fast-growing fish to offshore habitat, both of which should reduce the likelihood of fishing-induced evolution. Data regarding
the hogfish fishery are limited and regionally dependent, which has confounded previous stock assessments; however, the spatially explicit vital rates reported herein can be applied to future monitoring efforts
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976
A detailed description of the equations and computer program for computations involving chemical equilibria in complex systems is given. A free-energy minimization technique is used. The program permits calculations such as (1) chemical equilibrium for assigned thermodynamic states (T,P), (H,P), (S,P), (T,V), (U,V), or (S,V), (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. The program considers condensed species as well as gaseous species
Modeling the complete Otto cycle: Preliminary version
A description is given of the equations and the computer program being developed to model the complete Otto cycle. The program incorporates such important features as: (1) heat transfer, (2) finite combustion rates, (3) complete chemical kinetics in the burned gas, (4) exhaust gas recirculation, and (5) manifold vacuum or supercharging. Changes in thermodynamic, kinetic and transport data as well as model parameters can be made without reprogramming. Preliminary calculations indicate that: (1) chemistry and heat transfer significantly affect composition and performance, (2) there seems to be a strong interaction among model parameters, and (3) a number of cycles must be calculated in order to obtain steady-state conditions
Duties of Members, Directors, and Managers of Cooperative Associations
Exact date of bulletin unknown.PDF pages: 1
Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties
An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program
Review on Slip Transmission Criteria in Experiments and Crystal Plasticity Models
A comprehensive overview is given of the literature on slip transmission
criteria for grain boundaries in metals, with a focus on slip system and grain
boundary orientation. Much of this extensive literature has been informed by
experimental investigations. The use of geometric criteria in continuum crystal
plasticity models is discussed. The theoretical framework of Gurtin (2008, J.
Mech. Phys. Solids 56, p. 640) is reviewed for the single slip case. This
highlights the connections to slip transmission criteria from the literature
that are not discussed in the work itself. Different geometric criteria are
compared for the single slip case with regard to their prediction of slip
transmission. Perspectives on additional criteria, investigated in experiments
and used in computational simulations, are given.Comment: in Journal of Materials Science, 201
- …