88 research outputs found

    The reliability of inspiratory resistive load magnitude and detection testing

    Full text link
    Objectives: To assess the test-retest reliability of inspiratory load detection and load magnitude perception tests in healthy volunteers. Design: Cohort of convenience. Setting: Respiratory physiology laboratory. Participants: Twenty healthy adults. Interventions: On two separate occasions participants performed tests of inspiratory loading. Participants breathed through custom made resistive tubing and were asked to indicate when they detected a different resistance during inspiration. In a second test participants rated the magnitude of presented inspiratory loads using the modified Borg score. Main Outcome Measures: Intra-class Correlation Coefficient (ICC2,1) values for repeated tests of inspiratory load detection threshold and load magnitude rating. Results: ICC2,1 values ranged from 0.657–0.786 for load detection testing and 0.739 to 0.969 for rating of load magnitude. Conclusions: The tests are simple and reliable measures of inspiratory load detection and magnitude rating. They can be used in future research to determine the effectiveness of interventions to reduce the effort of breathing in health and disease

    Abdominal functional electrical stimulation to augment respiratory function in spinal cord injury

    Full text link
    Background: Functional electrical stimulation (FES) is the application of electrical pulses to a nerve to achieve a functional muscle contraction. Surface electrical stimulation of the nerves that innervate the abdominal muscles, termed abdominal FES, can cause the abdominal muscles to contract, even when paralysed after spinal cord injury. As the abdominal muscles are the major expiratory muscles, and commonly partially or completely paralysed in tetraplegia, abdominal FES offers a promising method of improving respiratory function for this patient group. Objective: The aim of the article is to provide readers with a better understanding of how abdominal FES can be used to improve the health of the spinal cord–injured population. Methods: A narrative review of the abdominal FES literature was performed. Results: Abdominal FES can achieve an immediate effective cough in patients with tetraplegia, while the repeated application over 6 weeks of abdominal FES can improve unassisted respiratory function. Ventilator duration and tracheostomy cannulation time can also be reduced with repeated abdominal FES. Conclusion: Abdominal FES is a noninvasive method to achieve functional improvements in cough and respiratory function in acute and chronically injured people with tetraplegia. Potential practical outcomes of this include reduced ventilation duration, assisted tracheostomy decannulation, and a reduction in respiratory complications. All of these outcomes can contribute to reduced morbidity and mortality, improved quality of life, and significant potential cost savings for local health care providers

    Impact of respiratory muscle training on respiratory muscle strength, respiratory function and quality of life in individuals with tetraplegia: A randomised clinical trial

    Full text link
    Background Respiratory complications remain a leading cause of morbidity and mortality in people with acute and chronic tetraplegia. Respiratory muscle weakness following spinal cord injury-induced tetraplegia impairs lung function and the ability to cough. In particular, inspiratory muscle strength has been identified as the best predictor of the likelihood of developing pneumonia in individuals with tetraplegia. We hypothesised that 6 weeks of progressive respiratory muscle training (RMT) increases respiratory muscle strength with improvements in lung function, quality of life and respiratory health. Methods Sixty-two adults with tetraplegia participated in a double-blind randomised controlled trial. Active or sham RMT was performed twice daily for 6 weeks. Inspiratory muscle strength, measured as maximal inspiratory pressure (PImax) was the primary outcome. Secondary outcomes included lung function, quality of life and respiratory health. Between-group comparisons were obtained with linear models adjusting for baseline values of the outcomes. Results After 6 weeks, there was a greater improvement in PImax in the active group than in the sham group (mean difference 11.5 cmH 2 O (95% CI 5.6 to 17.4), p<0.001) and respiratory symptoms were reduced (St George Respiratory Questionnaire mean difference 10.3 points (0.01-20.65), p=0.046). Significant improvements were observed in quality of life (EuroQol-Five Dimensional Visual Analogue Scale 14.9 points (1.9-27.9), p=0.023) and perceived breathlessness (Borg score 0.64 (0.11-1.17), p=0.021). There were no significant improvements in other measures of respiratory function (p=0.126-0.979). Conclusions Progressive RMT increases inspiratory muscle strength in people with tetraplegia, by a magnitude which is likely to be clinically significant. Measurement of baseline PImax and provision of RMT to at-risk individuals may reduce respiratory complications after tetraplegia. Trial registration number Australian New Zealand Clinical Trials Registry (ACTRN 12612000929808)

    Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis

    Get PDF
    Objectives: Abdominal functional electrical stimulation (abdominal FES) is the application of a train of electrical pulses to the abdominal muscles, causing them to contract. Abdominal FES has been used as a neuroprosthesis to acutely augment respiratory function and as a rehabilitation tool to achieve a chronic increase in respiratory function after abdominal FES training, primarily focusing on patients with spinal cord injury (SCI). This study aimed to review the evidence surrounding the use of abdominal FES to improve respiratory function in both an acute and chronic manner after SCI. Settings: A systematic search was performed on PubMed, with studies included if they applied abdominal FES to improve respiratory function in patients with SCI. Methods: Fourteen studies met the inclusion criteria (10 acute and 4 chronic). Low participant numbers and heterogeneity across studies reduced the power of the meta-analysis. Despite this, abdominal FES was found to cause a significant acute improvement in cough peak flow, whereas forced exhaled volume in 1 s approached significance. A significant chronic increase in unassisted vital capacity, forced vital capacity and peak expiratory flow was found after abdominal FES training compared with baseline. Conclusions: This systematic review suggests that abdominal FES is an effective technique for improving respiratory function in both an acute and chronic manner after SCI. However, further randomised controlled trials, with larger participant numbers and standardised protocols, are needed to fully establish the clinical efficacy of this technique

    PARADIGM-2: Two parallel phase I studies of olaparib and radiotherapy or olaparib and radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma, with treatment stratified by MGMT status

    Get PDF
    Glioblastoma has a dismal prognosis and molecular targeted agents have failed to improve outcomes to date. PARADIGM-2 is a phase I dose escalation study evaluating olaparib plus radiotherapy ± temozolomide in newly diagnosed glioblastoma, using MGMT methylation status to stratify patients and inform treatment schedules

    Assimilating Seizure Dynamics

    Get PDF
    Observability of a dynamical system requires an understanding of its state—the collective values of its variables. However, existing techniques are too limited to measure all but a small fraction of the physical variables and parameters of neuronal networks. We constructed models of the biophysical properties of neuronal membrane, synaptic, and microenvironment dynamics, and incorporated them into a model-based predictor-controller framework from modern control theory. We demonstrate that it is now possible to meaningfully estimate the dynamics of small neuronal networks using as few as a single measured variable. Specifically, we assimilate noisy membrane potential measurements from individual hippocampal neurons to reconstruct the dynamics of networks of these cells, their extracellular microenvironment, and the activities of different neuronal types during seizures. We use reconstruction to account for unmeasured parts of the neuronal system, relating micro-domain metabolic processes to cellular excitability, and validate the reconstruction of cellular dynamical interactions against actual measurements. Data assimilation, the fusing of measurement with computational models, has significant potential to improve the way we observe and understand brain dynamics

    Morphological Diversity and Connectivity of Hippocampal Interneurons

    Get PDF
    corecore