20 research outputs found

    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells

    Get PDF
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals

    MR1: a multi-faceted metabolite sensor for T cell activation

    Get PDF
    The major histocompatibility complex class I-related molecule MR1 captures and presents small metabolites to MR1- restricted T cells including Mucosal Associated Invariant T (MAIT) cells. The first MR1 ligands discovered were intermediates of microbial riboflavin synthesis, antigens presented to alert inflammatory MAIT cells to bacterial infection. Recent advances have expanded the range of MR1 ligands to include extracellular metabolites released by the commensal microbiome, and yet undefined antigens presented by cancer cells to mediate MR1-dependent anti-tumor activity. MR1 thus exhibits a multifaceted ability to display a diverse range of ligands for immune surveillance in a variety of contexts. The mechanisms of antigen presentation by MR1 are of central importance to understanding metabolite-mediated immune homeostasis, immunity to infection and tumor surveillance

    Understanding and modulating the MR1 metabolite antigen presentation pathway

    No full text
    The MHC class I-related protein, MR1, presents small metabolite antigens to an unusual subset of innate-like T cells. Herein, we highlight recent progress in our understanding of MR1’s unique antigen presenting pathway, with features of both MHC class I and class II antigen presentation, as highlighted during the EMBO Workshop: CD1-MR1, Beyond MHC-restricted lymphocytes, Oxford, 2019. There is increasing evidence for a role of MR1 restricted T cells in several immune contexts, from cancer to autoimmunity and infections, and therapeutic harnessing of this important biological axis through generation of agonist and antagonist MR1 ligands requires a thorough understanding of the molecular mechanisms of MR1-dependent antigen presentation

    Organ-specific isoform selection of fatty acid-binding proteins in tissue-resident lymphocytes

    No full text
    Tissue-resident memory T (TRM) cells exist throughout the body, where they are poised to mediate local immune responses. Although studies have defined a common mechanism of residency independent of location, there is likely to be a level of specialization that adapts TRM cells to their given tissue of lodgment. It has been shown that TRM cells in the skin rely on the uptake of exogenous fatty acids for their survival and up-regulate fatty acid-binding protein 4 (FABP4) and FABP5 as part of their transcriptional program. However, FABPs exist as a larger family of isoforms, with different members selected in a tissue-specific fashion that is optimized for local fatty acid availability. Here, we show that although TRM cells in a range of tissue widely express FABPs, they are not restricted to FABP4 and FABP5. Instead, TRM cells show varying patterns of isoform usage that are determined by tissue-derived factors. These patterns are malleable because TRM cells relocated to different organs modify their FABP expression in line with their new location. As a consequence, these results argue for tissue-specific overlays to the TRM cell residency program, including FABP expression that is tailored to the particular tissue of TRM cell lodgment

    Downregulation of MHC Class I Expression by Influenza A and B Viruses

    Get PDF
    Manipulation of the MHC-I presentation pathway, and thus limiting MHC-I cell surface expression, is used by many viruses to evade immune recognition. In particular, downregulation of MHC-I molecules at the cell surface can reduce the ability of CD8+ T cells to recognize viral peptides presented by MHC-I molecules and thereby delay viral clearance by CD8+ T cells. To date, MHC-I downregulation by influenza viruses has not been reported. Given that influenza virus infections are a global health concern and that CD8+ T cells play an important role in promoting influenza virus clearance and recovery from influenza disease, we investigated whether influenza A and B viruses (IAV, IBV) downregulated MHC-I as a novel mechanism to evade cellular immunity. Here, we showed that infection of several cell types, including epithelial A549 cells, with a panel of IAV and IBV viruses downregulated the surface MHC-I expression on IAV/IBV-infected cells during the late stages of influenza virus infection in vitro. This observation was consistent across a panel of class I-reduced (C1R) cell lines expressing 14 different HLA-A or -B alleles and a panel of 721.221 cell lines expressing 11 HLA-C alleles. Interestingly, IBV infection caused more pronounced reduction in surface MHC-I expression compared to IAV. Importantly, the two viruses utilized two distinct mechanisms for MHC-I downregulation. Our data demonstrated that while IAV caused a global loss of MHC-I within influenza-infected cells, IBV infection resulted in the preferential loss of MHC-I molecules from the cell surface, consequent of delayed MHC-I trafficking to the cell surface, resulting from retaining MHC-I intracellularly during IBV infection. Overall, our study suggests that influenza viruses across both IAV and IBV subtypes have the potential to downregulate MHC-I surface expression levels. Our findings provide new insights into the host-pathogen interaction of influenza A and B viruses and inform the design of novel vaccine strategies against influenza viruses

    Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens

    No full text
    The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER

    Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1

    No full text
    The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets

    Butyrophilin 2A1 is essential for phosphoantigen reactivity by gamma delta T cells

    No full text
    Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies
    corecore