107 research outputs found

    Implementation of accurate broadband steering vectors for broadband angle of arrival estimation

    Get PDF
    Motivated by accurate broadband steering vector requirements for applications such as broadband angle of arrival estimation, we review fractional delay filter designs. A common feature across these are their rapidly decreasing performance as the Nyquist rate is approached. We propose a filter bank based approach, which operates standard fractional delay filters on a series of frequency-shifted subband signals, such that they appear in the filters’ lowpass region. We demonstrate the appeal of this approach in simulations

    Broadband angle of arrival estimation methods in a polynomial matrix decomposition framework

    Get PDF
    A large family of broadband angle of arrival estimation algorithms are based on the coherent signal subspace (CSS) method, whereby focussing matrices appropriately align covariance matrices across narrowband frequency bins. In this paper, we analyse an auto-focussing approach in the framework of polynomial covariance matrix decompositions, leading to comparisons to two recently proposed polynomial multiple signal classification (MUSIC) algorithms. The analysis is complemented with numerical simulations

    Relevance of polynomial matrix decompositions to broadband blind signal separation

    Get PDF
    The polynomial matrix EVD (PEVD) is an extension of the conventional eigenvalue decomposition (EVD) to polynomial matrices. The purpose of this article is to provide a review of the theoretical foundations of the PEVD and to highlight practical applications in the area of broadband blind source separation (BSS). Based on basic definitions of polynomial matrix terminology such as parahermitian and paraunitary matrices, strong decorrelation and spectral majorization, the PEVD and its theoretical foundations will be briefly outlined. The paper then focuses on the applicability of the PEVD and broadband subspace techniques — enabled by the diagonalization and spectral majorization capabilities of PEVD algorithms—to define broadband BSS solutions that generalise well-known narrowband techniques based on the EVD. This is achieved through the analysis of new results from three exemplar broadband BSS applications — underwater acoustics, radar clutter suppression, and domain-weighted broadband beamforming — and their comparison with classical broadband methods

    Design of FIR paraunitary filter banks for subband coding using a polynomial eigenvalue decomposition

    Get PDF
    The problem of paraunitary filter bank design for subband coding has received considerable attention in recent years, not least because of the energy preserving property of this class of filter banks. In this paper, we consider the design of signal-adapted, finite impulse response (FIR), paraunitary filter banks using polynomial matrix EVD (PEVD) techniques. Modifications are proposed to an iterative, time-domain PEVD method, known as the sequential best rotation (SBR2) algorithm, which enables its effective application to the problem of FIR orthonormal filter bank design for efficient subband coding. By choosing an optimisation scheme that maximises the coding gain at each stage of the algorithm, it is shown that the resulting filter bank behaves more and more like the infiniteorder principle component filter bank (PCFB). The proposed method is compared to state-of-the-art techniques, namely the iterative greedy algorithm (IGA), the approximate EVD (AEVD), standard SBR2 and a fast algorithm for FIR compaction filter design, called the window method (WM). We demonstrate that for the calculation of the subband coder, the WM approach offers a low-cost alternative at lower coding gains, while at moderate to high complexity, the proposed approach outperforms the benchmarkers. In terms of run-time complexity, AEVD performs well at low orders, while the proposed algorithm offers a better coding gain than the benchmarkers at moderate to high filter order for a number of simulation scenarios

    Order-controlled multiple shift SBR2 algorithm for para-hermitian polynomial matrices

    Get PDF
    In this work we present a new method of controlling the order growth of polynomial matrices in the multiple shift second order sequential best rotation (MS-SBR2) algorithm which has been recently proposed by the authors for calculating the polynomial matrix eigenvalue decomposition (PEVD) for para-Hermitian matrices. In effect, the proposed method introduces a new elementary delay strategy which keeps all the row (column) shifts in the same direction throughout each iteration, which therefore gives us the flexibility to control the polynomial order growth by selecting shifts that ensure non-zero coefficients are kept closer to the zero-lag plane. Simulation results confirm that further order reductions of polynomial matrices can be achieved by using this direction-fixed delay strategy for the MS-SBR2 algorithm

    Row-shift corrected truncation of paraunitary matrices for PEVD algorithms

    Get PDF
    In this paper, we show that the paraunitary (PU) matrices that arise from the polynomial eigenvalue decomposition (PEVD) of a parahermitian matrix are not unique. In particular, arbitrary shifts (delays) of polynomials in one row of a PU matrix yield another PU matrix that admits the same PEVD. To keep the order of such a PU matrix as low as possible, we pro- pose a row-shift correction. Using the example of an iterative PEVD algorithm with previously proposed truncation of the PU matrix, we demonstrate that a considerable shortening of the PU order can be accomplished when using row-corrected truncation

    Shortening of paraunitary matrices obtained by polynomial eigenvalue decomposition algorithms

    Get PDF
    This paper extends the analysis of the recently introduced row-shift corrected truncation method for paraunitary matrices to those produced by the state-of-the-art sequential matrix diagonalisation (SMD) family of polynomial eigenvalue decomposition (PEVD) algorithms. The row-shift corrected truncation method utilises the ambiguity in the paraunitary matrices to reduce their order. The results presented in this paper compare the effect a simple change in PEVD method can have on the performance of the paraunitary truncation. In the case of the SMD algorithm the benefits of the new approach are reduced compared to what has been seen before however there is still a reduction in both reconstruction error and paraunitary matrix order

    Performance trade-offs in sequential matrix diagonalisation search strategies

    Get PDF
    Recently a selection of sequential matrix diagonalisation (SMD) algorithms have been introduced which approximate polynomial eigenvalue decomposition of parahermitian matrices. These variants differ only in the search methods that are used to bring energy onto the zero-lag. Here we analyse the search methods in terms of their computational complexities for different sizes of parahermitian matrices which are verified through simulated execution times. Another important factor for these search methods is their ability to transfer energy. Simulations show that the more computationally complex search methods transfer a greater proportion of the off-diagonal energy onto the zero-lag over a selected range of parahermitian matrix sizes. Despite their higher cost per iteration experiments indicate that the more complex search algorithms still converge faster in real time

    Maximum energy sequential matrix diagonalisation for parahermitian matrices

    Get PDF
    Sequential matrix diagonalisation (SMD) refers to a family of algorithms to iteratively approximate a polynomial matrix eigenvalue decomposition. Key is to transfer as much energy as possible from off-diagonal elements to the diagonal per iteration, which has led to fast converging SMD versions involving judicious shifts within the polynomial matrix. Through an exhaustive search, this paper determines the optimum shift in terms of energy transfer. Though costly to implement, this scheme yields an important benchmark to which limited search strategies can be compared. In simulations, multiple-shift SMD algorithms can perform within 10% of the optimum energy transfer per iteration step

    Cyclic-by-row approximation of iterative polynomial EVD algorithms

    Get PDF
    A recent class of sequential matrix diagonalisation (SMD) algorithms have been demonstrated to provide a fast converging solution to iteratively approximating the polynomial eigenvalue decomposition of a parahermitian matrix. However, the calculation of an EVD, and the application of a full unitary matrix to every time lag of the parahermitian matrix in the SMD algorithm results in a high numerical cost. In this paper, we replace the EVD with a limited number of Givens rotations forming a cyclic-by-row Jacobi sweep. Simulations indicate that a considerable reduction in computational complexity compared to SMD can be achieved with a negligible sacrifice in diagonalisation performance, such that the benefits in applying the SMD are maintained
    corecore