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Abstract—Recently a selection of sequential matrix diagonali-
sation (SMD) algorithms have been introduced which approx-
imate polynomial eigenvalue decomposition of parahermitian
matrices. These variants differ only in the search methods that
are used to bring energy onto the zero-lag. Here we analyse
the search methods in terms of their computational complexities
for different sizes of parahermitian matrices which are verified
through simulated execution times. Another important factor
for these search methods is their ability to transfer energy.
Simulations show that the more computationally complex search
methods transfer a greater proportion of the off-diagonal energy
onto the zero-lag over a selected range of parahermitian matrix
sizes. Finally we compare the real time convergence of the
search methods as part of their respective SMD algorithms.
The real time convergence experiments indicate that despite
taking a longer time to compute each iteration the more complex
algorithms that transfer more energy converge faster in real time.

I. INTRODUCTION

Sequential matrix diagonalisation encompasses a family of

iterative algorithms that can factorise a parahermitian matrix

into an approximate polynomial matrix eigenvalue decompo-

sition (PEVD). The PEVD extends the wide-ranging utility

of the EVD from narrowband to broadband problems, and

iterative PEVD algorithms have in the past found use in

optimal subband [1] and multichannel coding [2]; channel

coding [3], transmit and receive beamforming across broad-

band MIMO channel [4], [5], angle of arrival estimation [6].

It can also provide a preprocessing stage for beamforming

by applying denoising [7], decorrelation [8] and optimum

subband decompositions [9], or enable novel MVDR beam-

forming approaches [10].

Parahermitian matrices arise e.g. by including an explicit lag

τ into the space-time covariance R[τ ] = E
{

x[n]xH[n− τ ]
}

.

The matrix elements are auto- and cross-correlation sequences

that create a symmetry, R[τ ] = RH[−τ ], i.e. a parahermi-

tian matrix is equal to its complex conjugate, time reversed

version. For its z-transform, the cross spectral density matrix

R(z) •—◦ R[τ ], the parahermitian property is expressed as

R(z) = R̃(z), where the parahermitian operator {̃·} im-

plies complex conjugation and time reversal. A polynomial

EVD [11]–[13] of such a parahermitian matrix,

Λ(z) ≈ Q(z)R(z)Q̃(z) , (1)

is claimed to exist in close approximation for FIR paraunitary

matrices Q(z) of sufficiently high order [14].

A number of iterative PEVD algorithms have been intro-

duced, including second order sequential best rotation (SBR2)

methods [1], [13], which eliminate the maximum off-diagonal

element at every iteration. An approximate PEVD [15] oper-

ates on a fixed order paraunitary matrix, but unlike SBR2 has

not been proven to converge. More recently, a sequential ma-

trix diagonalisation (SMD) algorithm has been introduced [2],

which is also proven to converge but seems capable of

attaining better diagonalisation of the space-time covariance

matrix R(z) than SBR2 algorithms [1], [13]. The SMD family

has been extended by a multiple-shift version, which has

been found to transfer even more energy per iteration [16],

with additional searches the only cost increase over SMD.

Therefore, the aim of this paper is to explore some of the

performance trade-off details w.r.t. computational cost and

diagonalisation, between the different SMD algorithms.

The paper is organised as follows. Iterative PEVD algo-

rithms based on the idea of sequential matrix diagonalisation

are introduced in Sec. II. The difference in the SMD search

steps and their associated cost is investigated in Sec. III. Fi-

nally, performance metrics and simulation results are presented

in Sec. IV followed by conclusions in Sec. V.

II. SEQUENTIAL MATRIX DIAGONALISATION

The sequential matrix diagonalisation algorithm (SMD) [2]

and a number of derivative versions [16]–[18] iteratively

diagonalise a parahermitian matrix to approximate its PEVD.

The initialisation step of any SMD algorithm fully diagonalises

the zero-lag of the parahermitian matrix, R[0], achieved via

the modal matrix Q(0) of the ordered EVD of R[0], which is

applied to all lags of the parahermitian matrix,

S(0)(z) = Q(0)R(z)Q(0)H . (2)

Each iteration of the SMD algorithm includes a shift operation

which brings off-diagonal energy onto the zero-lag,

S(i)′(z) = Λ(i)(z)S(i−1)(z)Λ̃
(i)
(z) , i = 1 . . . I . (3)

The shift matrix, Λ(i)(z), is determined by the search strategy

which varies between SMD versions and will be discussed

further in Sec III.

An SMD iteration is then completed by transferring energy

from the zero-lag on to the diagonal, like the initialisation step,



this consists of applying the EVD modal matrix to the entire

parahermitian matrix,

S(i)(z) = Q(i)S(i)′(z)Q(i)H . (4)

This diagonalises [2], [16]–[18] the zero-lag matrix S(i)[0].

The SMD algorithms repeat steps (3) & (4) for either a

set number of iterations or until some threshold based on

the entries of the parahermitian matrix is reached (e.g. max

off-diagonal element). Thus after a total of I iterations, the

paraunitary matrix which approximately diagonalises R(z)
is obtained by the product of the matrices produced by the

initialisation and steps (3) & (4) from each iteration i.e.

Q̂(z) = G(I)(z) . . .G(1)(z)G(0)(z) , (5)

where each G(i)(z) is constructed from the delay and energy

transfer matrices from the ith step i.e.

G(i)(z) = Q(i)Λ(i)(z) . (6)

This approximates a PEVD with

S(I)(z) = Q̂(z)R(z)
˜̂
Q(z) . (7)

Convergence proofs for the various SMD algorithms show that

for a sufficiently high I , the off-diagonal energy in S(I)(z) can

be reduced to an arbitrarily low bound. Spectral majorisation

of S(I)(z) cannot be guaranteed, but is encouraged through

appropriate ordering in step (4).

III. SEARCH METHODS

This section discusses how SMD algorithms identify the

elements to be transferred in the first SMD step outlined in

Sec. II. We mainly consider the order O(·) of the computa-

tional complexity in terms of multiply-accumulate operations,

which depends on the matrix dimension M and the lag

dimension L, whereby it must be noted that L grows with

every iteration [2], [13] and the extent of the growth varies

with both algorithm and input parahermitian matrix R(z) [19].

A. Column Norm / SMD-Algorithm

The original SMD algorithm [2] in its ith iteration inspects

the vectors ŝ
(i−1)
k [τ ], which are the columns of S(i−1)[τ ] but

modified by removing its on-diagonal elements. The set

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , i = 1 . . . I , (8)

identifies the vector ŝ
(i−1)
k [τ ] with maximum norm, which is

transferred onto the zero-lag matrix and subsequently elim-

inated. A total of ML column norms of the parahermitian

matrix have to be calculated. Each norm requires a squaring of

elements, but the square root operation can be omitted as only

a comparison of norms but no explicit values are required.

Thus, with each column vector having length M , the norm

computation is O(M2L) followed by a search over O(ML)
elements.

TABLE I
COST COMPARSION OF SMD SEARCH METHODS.

method norm calc. comparisons total

SMD O(M2
L) O(ML) O(M2

L)
ME-SMD O(0) O(M2

L) O(M2
L)

MSME-SMD O(0) O(M3
L) O(M3

L)

B. Maximum Element / ME-SMD Algorithm

Introduced as a simplification to the SMD search in

Sec. III-A, the maximum-element SMD (ME-SMD) algo-

rithm [2] replaces the l2 norm in (8) by the l∞ norm. Thus

in each iteration, the maximum element can be identified

without any explicit norm calculation but requires a search

over an enlarged set of O(M2L) elements. The energy that

is transferred in a single step by ME-SMD is always smaller

or equal to that eliminated by the original SMD version, but

the algorithm was designed with the expectation of a lower

computational complexity.

C. Multiple Shift Maximum Element / MSME-SMD Algorithm

The multiple shift maximum element (MSME) search

method, used in the MSME-SMD algorithm [16], initiates

every iteration by scanning the entire parahermitian matrix for

its maximum off-diagonal element similar to ME-SMD, em-

ploying the l∞ instead of the l2 norm in (8). However, MSME-

SMD does not transfer just one-column into the zero-lag, but

will perform a total of (M − 1) column shifts to increase the

energy transfer in the second step of each iteration. This is

achieved by (M−1) searches over increasingly limited search

spaces such that previously identified and shifted maxima are

not undone by later shifts [16].

This approach requires no norm evaluations but the com-

plexity of the search is O(M3L) because each iteration

involves searching M2L elements a total of M − 1 times, for

asymptotic analysis M −1 is simplified to M . An overall cost

comparison of the three search methods is provided in Tab. I,

with a total search cost order provided on the basis that one

comparison for the maximum search is about as expensive as

one multiply-accumulate operation.

IV. RESULTS

A. Simulation Set-Up and Performance Metrics

To assess the proposed search algorithms, we consider an

ensemble of 103 random M×M parahermitian matrices R(z)
of order 2L−1, for M = 2, 4, . . . 20, & L = 50, 100, . . .500.

Each instance of R(z) is generated as R(z) = A(z)Ã(z),
where A(z) ∈ CM×M is a random polynomial matrix of order

L with independent and identically distributed zero mean and

unit variance complex Gaussian entries.

Execution time is used to measure the computational com-

plexity of the search methods in Matlab 2014a with the fol-

lowing system specification: Ubuntu 14.04 on a Dell Precision

T3610 with Intel R© Xeon R© E5-1607V2 3.00 GHz x 4 cores

and 8 GB RAM.



In addition to execution time we have also investigated the

proportion of the off-diagonal energy that is brought onto

the zero-lag by each of these search algorithms for the same

ensemble but M is restricted to 4, 10 & 20. The proportion

of shifted energy, E
(m,l)
shift , is averaged over the ensemble and

calculated as

E
(m,l)
shift =

∑M

k=1 ‖ŝ
(m,l)′

k [0]‖22
∑

τ

∑M

k=1 ‖ŝ
(m,l)
k [τ ]‖22

, (9)

where ŝ
(m,l)
k [τ ] is the modified column vector from (8). The

numerator in (9) is the the off-diagonal energy brought onto

the zero-lag and the denominator is the off-diagonal energy in

the entire parahermitian matrix. The algorithm that shifts most

energy onto the zero-lag consequently produces the highest

E
(m,l)
shift .

The final test measures diagonalisation, the remaining nor-

malised off-diagonal energy after i iterations,

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (10)

where R[τ ] is the initial parahermitian matrix and ‖ · ‖F the

Frobenius norm. Unlike E
(m,l)
shift , the value for E

(i)
norm should

ideally be minimised. The matrix dimension M is restricted

as above and the initial L is 6.

B. Real Time Complexity

The O(·) notation essentially only shows the shape of the

time complexity of these search methods. It is also good

to show the real time complexity as there could be hidden

constants that dramatically affect real time performance [20],

and it is difficult to relate the complexity order for MAC

operations required for norm calculations with comparisons

required for the maximum search.

The real time complexity for the column norm search is

given in Fig. 1; this agrees with the complexity analysis of

O(M2L) with the linear increase with L and shallow but

polynomial increase with M . Although thought of as low cost,

the real time performance of the maximum element search in

Fig. 2 is very similar to that of the column norm approach both

with the trends shown with matrix dimensions and the real

time performance. Fig. 3 shows the the real time performance

of the MSME search. The linear increase with number of

lags and quite a steep polynomial increase with the matrix

dimension agrees with the complexity analysis of O(M3L).
Comparing Figs. 1, 2 & 3 it is clear to see that the MSME

search is significantly slower for larger matrix sizes than the

other two.

C. Energy Transfer

Another important metric for these search algorithms is

the amount of energy they bring onto the zero-lag at each

iteration. This section will investigate how this varies with

matrix dimensions for the various search methods.

The energy transfer for the column norm, maximum element

and MSME methods are shown in Fig. 4. The most striking
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Fig. 1. Column Norm search time for varying matrix size.

5

10

15

20

100

200

300

400

500

0

3

6

9

x 10
−3

Matrix Dimension Mnumber of lags L

m
ea
n
ex
ec
u
ti
on

ti
m
e
E
{t
}
/
[s
]

Fig. 2. Maximum Element search time for varying matrix size.
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Fig. 3. MSME search time for varying matrix size.
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Fig. 5. Reduction in off-diagonal energy vs. mean execution time over 100
algorithm iterations.

difference is that for the MSME approach the energy transfer

does not degrade as dramatically with the matrix dimension

M , this is because as M increases the number of elements

brought onto the zero-lag also increases. Comparing only the

column norm and maximum element searches we see that

the overall trends are very similar and that they degrade at

a similar rate. Crucially, overall the column norm approach

does indeed tend to transfer more energy than the maximum

element method.

D. Real Time Convergence

While the previous two sections have focussed only on

the search step of the SMD algorithms, here we show how

they converge in real time over I = 100 iterations of each

algorithm. Fig. 5 shows a real time convergence example for

when M = 4, 10 & 20, here we can see that despite its

higher computational cost the fastest converging algorithm is

the MSME-based implementation and the column norm ap-

proach converges faster than the algorithm using the maximum

element search.

V. CONCLUSION

The complexities and energy transfer associated with three

of the search algorithms used in the SMD family of PEVD

algorithms have been investigated in detail. The complexities

range from the simplistic maximum element search right up

to the more complex multiple shift maximum element search.

The MSME search tends to obtain the greatest amount of

energy at any iteration however the multiple shifts cause its

complexity to rise significantly with matrix dimensions. The

maximum element and column norm searches have a similarly

low complexity however this comes at the cost of lower energy

transfer. From the results presented the maximum element

version does not appear to have any significant benefit over

the column norm based search however the column norm

search will generally bring more energy onto the zero-lag and

hence converge faster. Despite it’s significantly higher cost, the

MSME search approach has been shown to converge faster in

real time than the others for the experiments shown.
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