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ABSTRACT

In this work we present a new method of controlling the order

growth of polynomial matrices in the multiple shift second

order sequential best rotation (MS-SBR2) algorithm which

has been recently proposed by the authors for calculating

the polynomial matrix eigenvalue decomposition (PEVD)

for para-Hermitian matrices. In effect, the proposed method

introduces a new elementary delay strategy which keeps all

the row (column) shifts in the same direction throughout each

iteration, which therefore gives us the flexibility to control

the polynomial order growth by selecting shifts that ensure

non-zero coefficients are kept closer to the zero-lag plane.

Simulation results confirm that further order reductions of

polynomial matrices can be achieved by using this direction-

fixed delay strategy for the MS-SBR2 algorithm.

Index Terms— MS-SBR2, Polynomial Matrix EVD, Or-

der Growth Control.

1. INTRODUCTION

Polynomial matrices [1] often arise in describing the convo-

lutive mixing for broadband sensor array processing. Assum-

ing the sensor output signals x[t] ∈ C
M have zero mean, the

space-time covariance matrix R[τ ] ∈ CM×M can be used to

formulate the correlation of the sensor outputs, which is ex-

pressed as R[τ ] = E{x[t]xH[t − τ ]}. Here t, τ ∈ Z, E{·}
represents the expectation operation and {·}H denotes conju-

gate transposition. Therefore, its z-transform yields a poly-

nomial cross-spectral density (CSD) matrix taking the form

of

R(z) =

T∑

τ=−T

R[τ ]z−τ =

⎡
⎢⎣
r11(z) · · · r1M (z)

...
. . .

...

rM1(z) · · · rMM (z)

⎤
⎥⎦ ,

(1)

with the polynomial order given by 2T +1, such that R[τ ] =
0 ∀|τ | > T , and each element of this matrix is a polynomial

represented by rmn(z) =
∑

τ rmn[τ ]z
−τ . Note that the CSD

matrix is para-Hermitian (PH) which satisfies R̃(z) = R(z).
The notation {̃·} upon a polynomial matrix denotes the para-

conjugate operation, i.e., R̃(z) = RH(1/z), which means

take the conjugate transposition for all the coefficient matri-

ces R[τ ] and time-reversing all the elements inside. Unless

otherwise stated, polynomial matrices in this paper are repre-

sented by underscored upper case bold characters.

The conventional eigenvalue decomposition (EVD) can

be used to diagonalize the covariance matrix which corre-

sponds to decorrelating instantaneously mixed signals in the

narrowband situation, but it is not suitable to generate the

equivalent decomposition of a polynomial matrix R(z). To

solve this problem, an extension of the EVD to polynomial

matrices has been proposed in [2], and its idea has been gen-

eralized as

H(z)R(z)H̃(z) ≈ D(z) , (2)

where H(z) is a paraunitary (PU) matrix, i.e., H(z)H̃(z) =

H̃(z)H(z) = IM×M , and it aims to diagonalize R(z) by

means of paraunitary similarity transformation. D(z) is (ide-

ally) a diagonal matrix.

Several algorithms exist for calculating the PEVD in (2),

including the most established SBR2 algorithm [2], its faster

converging version, MS-SBR2 [3] and the family of sequen-

tial matrix diagonalization (SMD) algorithms [4–6]. One

common feature among these PEVD algorithms is that the

order of polynomial matrices continuously increases with

each iteration. This is problematic, as such order growth will

lead to a significant increasing in computational complexity.

In addition, paraunitary matrices with high order will cause

costly implementation for applications including subband

coding [7], precoding and equalization design for broadband

MIMO systems [8], blind source separation from convolutive

mixtures [9], and spectral factorization [10] etc.

This paper introduces a new elementary delay strategy for

the MS-SBR2 algorithm which can be used to restrict the di-

rection of all row (column) shifts throughout iterations. The

benefit of doing this is that all the zero filled outer lags of

polynomial matrices can be precisely tracked and removed

without affecting the algorithm convergence. In other words,

it is a lossless process.

In this paper, we aim to investigate how this direction-

fixed delay strategy can exploited to limit the polynomial or-

der growth in the MS-SBR2 algorithm. In particular, the ob-

jective is to see if any further order reductions can be achieved



during the truncation process [2, 11, 12] while the direction-

fixed delay strategy is involved in the MS-SBR2 algorithm.

To accomplish this, we start by briefly reviewing the

SBR2 and MS-SBR2 algorithms in Sec. 2. Sec. 3 presents

the details of the method for controlling the polynomial order

growth in the MS-SBR2 algorithm. Simulation results and

conclusions are shown in Sec. 4 and Sec. 5 respectively.

2. STATE OF THE ART

2.1. SBR2 Algorithm

The SBR2 algorithm calculates the PEVD by using a se-

quence of elementary paraunitary operations to iteratively

diagonalize the para-Hermitian matrix R(z). Each elemen-

tary paraunitary operation consists of two steps, i.e., an el-

ementary delay and a Jacobi transformation. At the i-th
iteration, the SBR2 algorithm starts by finding the maximum

off-diagonal element r
(i)
jk [τ ] within the upper triangular area

of R(i−1)[τ ]. Thus the location of r
(i)
jk [τ ], (k > j) satisfies

{j(i), k(i), τ (i)} = arg max
j,k>j,τ

‖R(i−1)[τ ]‖∞ , (3)

where j(i), k(i) and τ (i) are the corresponding row, column

and time lag index.

Then the maximum element r
(i)
jk [τ ] and its complex con-

jugate r
(i)
kj [−τ ] are shifted onto the zero-lag (τ = 0) by using

the elementary delay matrix, such that

R′(i)(z) = P(i)(z)R(i−1)(z)P̃
(i)
(z) , (4)

where R′(i)(z) denotes the intermediate matrix after the ele-

mentary delay operation, and the delay matrix P(i)(z) takes

the form of

P(i)(z) = diag{1 · · ·1︸ ︷︷ ︸
k(i)−1

z−τ (i)

1 · · · 1︸ ︷︷ ︸
M−k(i)

} , (5)

which means shifting the maximum element in the k(i)-th row

by |τ (i)| lags onto the zero-lag. Finally the maximum element

is brought onto the diagonal using the Jacobi transformation

Q(i) [2], which results in

R(i)(z) = Q(i)R′(i)(z)QH(i) . (6)

Thus the elementary paraunitary matrix E(i)(z) for the i-th
iteration can be expressed as

E(i)(z) = Q(i)P(i)(z) . (7)

The algorithm continues its iterations until all the off-diagonal

elements are below a given threshold, with a smaller threshold

giving greater accuracy. Assuming that the algorithm has con-

verged at the N -th iteration, the diagonalized para-Hermitian

matrix in (2) takes the form of

D(z) = diag{d1(z) d2(z) · · · dM (z)} , (8)

and the generated paraunitary polynomial matrix is given by

H(z) =

N∏

i=1

E(i)(z) = E(N)(z) · · ·E(2)(z)E(1)(z) . (9)

2.2. MS-SBR2 Algorithm

The MS-SBR2 algorithm [3] is an improved version of the

SBR2 algorithm in terms of the convergence speed. It adopts

the faster convergence property from the multiple shift max-

imum element SMD (MSME-SMD) algorithm [5] while still

preserving the benefit of lower computational cost from the

SBR2 algorithm. It uses a different search strategy of the off-

diagonal elements which is akin to that of the MSME-SMD

algorithm, so that it can achieve the diagonalization with less

iterations than the SBR2 algorithm.

For the i-th iteration, the MS-SBR2 algorithm involves

multiple shifts operations P̂
(i)
(z), followed by a sequence

of Jacobi transformations Q̂(i). Therefore the resulting para-

Hermitian matrix is computed by

R(i)(z) = Q̂(i)P̂
(i)
(z)R(i−1)(z)

˜̂
P

(i)

(z)Q̂H(i) , (10)

where P̂
(i)
(z) =

∏L(i)

l=1 P(l,i)(z), Q̂(i) =
∏L(i)

l=1 Q(l,i) and

L(i) denotes the total number of off-diagonal elements shifted

onto the zero-lag at the i-th iteration (L(i) ∈ Z, 1 ≤ L(i) ≤
⌊M/2⌋).

Accordingly the delay matrix at the l-th delay stage within

i-th iteration is represented by

P(l,i)(z) = diag{ 1 · · · 1︸ ︷︷ ︸
k(l,i)−1

z−τ (l,i)

1 · · · 1︸ ︷︷ ︸
M−k(l,i)

} , (11)

and the elementary paraunitary matrix can be expressed as

Ê
(i)
(z) = Q̂(i)P̂

(i)
(z). Note that when L(i) = 1, the MS-

SBR2 algorithm is identical to the SBR2 algorithm. For fur-

ther details of the algorithm, including numerical examples

and proof of convergence, see [3].

3. POLYNOMIAL ORDER GROWTH CONTROL

The idea of controlling order growth of polynomial matrices

for MS-SBR2 is implemented by using the direction-fixed de-

lay strategy. This process also involves removing zero-filled

outer matrices after each iteration. Thus the whole scheme

is entitled order-controlled MS-SBR2 (OC-MS-SBR2) algo-

rithm.

For each delay stage in MS-SBR2, the conventional delay

strategy [3] operates by shifting the k(l,i)-th row of R(l,i)(z)
towards either positive (τ (l,i) > 0) or negative (τ (l,i) < 0)

lag direction, and so the k(l,i)-th column to the opposite di-

rection. In some cases, the directions of row (column) shifts

at different delay stages within one iteration might be differ-

ent, which will result in some non-zero elements to be shifted

further away from zero-lag plane and cause the unnecessary

order growth of polynomial matrices.

However, the new delay strategy which constrains all the

rows (columns) moving in the same direction can guarantee

no interference between the subsequent delay stages. This

helps to keep the non-zero elements near the zero-lag plane.



In other words, it maximises the number of zero-filled lags

which can be easily eliminated without loss of any energy or

affecting the accuracy of algorithm. In the context of this pa-

per, the direction of all the row shifts is confined towards the

positive time lag, while the direction of all the column shifts

towards the negative time lag. The summary of the direction-

fixed delay strategy is shown in Tab. 1.

Table 1. Direction-Fixed Delay Strategy for the i-th Iteration in the

OC-MS-SBR2 Algorithm

1. Input parameters:

R
(i−1)(z), H(i−1)(z), {j(l,i), k(l,i), τ (l,i)}.

2. Initialization:

R
(1,i)(z) ← R

(i−1)(z), H(1,i)(z) ← H
(i−1)(z).

3. for l = 1 : L(i)

4. if τ (l,i) > 0

5. Shift the k(l,i)-th row of R(l,i)(z) and H
(l,i)(z)

by |τ (l,i)| lags towards the positive lag direction;

6. Shift the k(l,i)-th column of R(l,i)(z) by |τ (l,i)|
lags towards the negative lag direction.

7. elseif τ (l,i) < 0

8. Shift the j(l,i)-th row of R(l,i)(z) and H
(l,i)(z)

by |τ (l,i)| lags towards the positive lag direction;

9. Shift the j(l,i)-th column of R(l,i)(z) by |τ (l,i)|
lags towards the negative lag direction.

10. else

11. R
(l,i)(z) ← R

(l,i)(z), H(l,i)(z) ← H
(l,i)(z).

12. end

13. end

14. R
′(i)(z) ← R

(L(i),i)(z), H′(i)(z) ← H
(L(i),i)(z).

Assuming no order truncation scheme is applied when

computing the PEVD via OC-MS-SBR2, the order growth

on R(i)(z) and H(i)(z) are now bounded by the maximum

modulus of the delays |τ (lmax ,i)|, whereby

lmax = arg max
l

|τ (l,i)|, ∀ l = 1 · · ·L(i) , (12)

and |τ (l,i)| denotes the modulus of the delay needed for bring-

ing the maximum element onto the zero-lag at the l-th de-

lay stage within i-th iteration. With zero-filled outer matrices

being removed, the resulting polynomial orders can be esti-

mated as

O
(N)
R = O

(0)
R + 2

N∑

i=1

|τ (lmax,i)| ,

O
(N)
H = 1 +

N∑

i=1

|τ (lmax,i)| ,

(13)

where O
(N)
R denotes the order of para-Hermitian matrix

R(N)(z) at the N -th iteration with the initial order value

of O
(0)
R , and O

(N)
H denotes the order of the paraunitary ma-

trix H(N)(z). Bear in mind that the benefit of using the

direction-fixed delay strategy can only be reflected when

L(i) ≥ 2, ∃ i = 1 · · ·N , meaning that in OC-MS-SBR2 there

exists at least one iteration at which two or more shift steps

arise. For example, the best scenario for R(z) with dimen-

sion of 6 × 6 is that there are 3 off-diagonal elements to be

shifted and rotated at each iteration.

Due to the manner in which PEVD algorithms operate,

the resulting para-Hermitian matrix R(i)(z) at each itera-

tion is usually with highly sparse outer coefficient matrices

which generally accounts for a small proportion of the total

energy of R(z). To truncate the negligibly small amount

of energy and also to reduce the computational complexity,

the para-Hermitian [11] and paraunitary [12] truncation ap-

proaches are respectively applied to R(i)(z) and H(i)(z) with

pre-defined truncation parameters µPH and µPU whose values

indicate the proportion of the total energy of R(z) and H(z)
to be truncated. Further details about how the OC-MS-SBR2

algorithm performs after introducing the truncation schemes

will be presented in the next section.

4. RESULTS

To examine the performance of the different PEVD algo-

rithms, the performance metrics are firstly defined, followed

by the description of the simulation scenario and results of

comparison.

4.1. Performance Metrics

To confirm that the OC-MS-SBR2 algorithm shifts a similar

amount of energy at each iteration as the conventional MS-

SBR2 algorithm, the first test is to measure the diagonaliza-

tion performance, i.e., the remaining off-diagonal energy af-

ter i iterations normalized by the energy of the input para-

Hermitian matrix R(z),

η(i) =

∑
τ

∑M
m,n,m �=n |r

(i)
mn[τ ]|2

∑
τ ‖R[τ ]‖

2
F

, (14)

where the notation ‖·‖F denotes the Frobenius norm.

The paraunitary property, i.e., H(i)(z)H̃
(i)
(z) = IM×M ,

is lost after applying the truncation, therefore the difference

from paraunitary is given by

Φ(i)(z) = IM×M −H
(i)
T (z)H̃

(i)

T (z) , (15)

where H
(i)
T (z) denotes the truncated matrix. Thus the loss of

the paraunitarity can be measured as

ξ(i) =
1

M

∑

τ

‖Φ(i)[τ ]‖2F . (16)

4.2. Simulation Scenario

The PEVD algorithms are run by using Monte Carlo simula-

tions over an ensemble of 2000 different random 6 × 6 para-
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Fig. 1. Comparison of the convergence speed among different ver-

sions of SBR2, showing the ensemble averages of normalized off-

diagonal energy η(i) versus iterations.

Hermitian matrices R(z), which can be generated from ma-

trices A(z) ∈ C
6×6 of order 3 with i.i.d. zero mean unit vari-

ance complex Gaussian entries, such that R(z) = A(z)Ã(z).
Each of the PEVD algorithms was run for 100 iterations with

the performance metrics recorded after every 10 iterations.

The simulations was firstly set up with the para-Hermitian

and paraunitary truncation parameters µPH = µPU = 0, i.e.,

no truncation scheme is applied, then repeated over the same

ensemble for µPH = 10−4 and µPU = 10−3.

4.3. Algorithm Convergence & Polynomial Order

As shown in Fig. 1, both versions of MS-SBR2 algorithm

require much fewer iterations than the SBR2 algorithm to

achieve the same level of diagonalization. However, it should

be noticed that each iteration within MS-SBR2 involves more

rotation steps, which means the computational costs among

them are comparable. Also, the elimination of zero-valued

coefficient matrices in MS-SBR2 seems no impact on the al-

gorithm convergence.

Without using the truncation schemes, Fig. 2 presents the

results of the average number of lags versus iterations among

different PEVD algorithms, and it shows almost half amount

of lag reductions achieved in R(i)(z) for the OC-MS-SBR2

algorithm. After applying the truncations with µPH = 10−4

and µPU = 10−3, the average polynomial orders of R(i)(z)

and H(i)(z) versus iterations are respectively depicted in

Fig. 3 and 4. The benefit in terms of order reduction from

the OC-MS-SBR2 algorithm is reduced when non-zero val-

ues are truncated. Fig. 5 shows the reconstruction error of

paraunitarity for different PEVD methods. Initially the error

curves start very low but they quickly increase as the trunca-

tion algorithms begin to remove the proportion of energy. In

particular, both versions of MS-SBR2 algorithms have shown

very similar reconstruction error throughout iterations. Again

it proves that the introduction of the order growth control

scheme for MS-SBR2 does not affect the convergence of the

algorithm.

5. CONCLUSION

We have proposed an order-controlled version of MS-SBR2

algorithm for calculating the PEVD. The OC-MS-SBR2 algo-
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Fig. 2. Comparison of the average number of lags of R(i)(z) among

different versions of SBR2. Note that the number of lags is not

equivalent to the number of orders.
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Fig. 3. Average order of R(i)(z) after truncation [11] with µPH =
10−4, showing the comparison among different versions of SBR2.

rithm uses a direction fixed delay strategy which can limit the

polynomial order growth by selecting shifts that ensure non-

zero coefficients are kept closer to the zero-lag plane. It pre-

serves the similar algorithm convergence property and same

level of computational cost as the conventional MS-SBR2 al-

gorithm. Simulation results have suggested that further order

reductions can be achieved after introducing the order trunca-

tion process to the OC-MS-SBR2 algorithm.
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