30 research outputs found
Intersecting black branes in strong gravitational waves
We consider intersecting black branes with strong gravitational waves
propagating along their worldvolume in the context of supergravity theories.
Both near-horizon and space-filling gravitational wave modes are included in
our ansatz. The equations of motion (originally, partial differential
equations) are shown to reduce to ordinary differential equations, which
include a Toda-like system. For special arrangements of intersecting black
branes, the Toda-like system becomes integrable, permitting a more thorough
analysis of the gravitational equations of motion.Comment: 17 pages; v2: cosmetic improvements, published versio
Extended black holes in strong gravitational waves
We describe a large class of solutions in pure gravity, dilaton gravity and
supergravity corresponding to extended higher-dimensional black holes with
strong (non-linear) gravitational waves propagating along their worldvolume.
For pure gravity, the extended black holes are higher-dimensional analogs of
the point-like Schwarzschild black hole in four dimensions. For supergravity,
they are non-extremal p-branes. The gravitational waves can be both
space-filling and localized around the worldvolume of the extended black holes.
The solutions we present contain a large number of arbitrary functions of the
light-cone time describing the amplitudes of different non-linear gravitational
wave modes.Comment: 14 pages; v3: commentary and references extended, published versio
Equivalent forms of Dirac equations in curved spacetimes and generalized de Broglie relations
One may ask whether the relations between energy and frequency and between
momentum and wave vector, introduced for matter waves by de Broglie, are
rigorously valid in the presence of gravity. In this paper, we show this to be
true for Dirac equations in a background of gravitational and electromagnetic
fields. We first transform any Dirac equation into an equivalent canonical
form, sometimes used in particular cases to solve Dirac equations in a curved
spacetime. This canonical form is needed to apply the Whitham Lagrangian
method. The latter method, unlike the WKB method, places no restriction on the
magnitude of Planck's constant to obtain wave packets, and furthermore
preserves the symmetries of the Dirac Lagrangian. We show using canonical Dirac
fields in a curved spacetime, that the probability current has a Gordon
decomposition into a convection current and a spin current, and that the spin
current vanishes in the Whitham approximation, which explains the negligible
effect of spin on wave packet solutions, independent of the size of Planck's
constant. We further discuss the classical-quantum correspondence in a curved
spacetime based on both Lagrangian and Hamiltonian formulations of the Whitham
equations. We show that the generalized de Broglie relations in a curved
spacetime are a direct consequence of Whitham's Lagrangian method, and not just
a physical hypothesis as introduced by Einstein and de Broglie, and by many
quantum mechanics textbooks.Comment: PDF, 32 pages in referee format. Added significant material on
canonical forms of Dirac equations. Simplified Theorem 1 for normal Dirac
equations. Added section on Gordon decomposition of the probability current.
Encapsulated main results in the statement of Theorem
Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit
We will investigate the influence of the inhomogeneity of the universe,
especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a
gravitationally bound local system such as the solar system. We concentrate on
the dynamical perturbation to the planetary motion and derive the leading order
effect generated from the LTB model. It will be shown that there appear not
only a well-known cosmological effect arisen from the homogeneous and isotropic
model, such as the Robertson-Walker (RW) model, but also the additional terms
due to the radial inhomogeneity of the LTB model. We will also apply the
obtained results to the problem of secular increase in the astronomical unit,
reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of
the universe cannot have a significant effect for explaining the observed
.Comment: 12 pages, no figure, accepted for publication in Journal of
Astrophysics and Astronom
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Relativistic Chaos in Robertson-Walker Cosmologies: The Topological Structure of Space-Time and the Microscopic Dynamics
Keywords: Robertson-Walker cosmology, relativistic chaos, mixing, Bernoulli property, time evolution, quantum fields, quantum chaos, bound states, energy functional, hyperbolic manifold, deformation space, Kleinian group, limit set, Hausdorff dimension, convex hull