57 research outputs found

    Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

    Get PDF
    Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza

    Efficient Generation of Germ Line Transmitting Chimeras from C57BL/6N ES Cells by Aggregation with Outbred Host Embryos

    Get PDF
    Genetically modified mouse strains derived from embryonic stem (ES) cells have become essential tools for functional genomics and biomedical research. Large scale mutagenesis projects are producing libraries of mutant C57BL/6 (B6) ES cells to enable the functional annotation of every gene of the mouse genome. To realize the utility of these resources, efficient and accessible methods of generating mutant mice from these ES cells are necessary. Here, we describe a combination of ICR morula aggregation and a chemically-defined culture medium with widely available and accessible components for the high efficiency generation of germline transmitting chimeras from C57BL/6N ES cells. Together these methods will ease the access of the broader biomedical research community to the publicly available B6 ES cell resources

    LAB/NTAL/Lat2: a force to be reckoned with in all leukocytes?

    No full text
    LAB/NTAL/Lat2 is a transmembrane adaptor protein closely related to LAT. It is expressed in various myeloid and lymphoid cells, many of which also express LAT. Phosphorylation of LAB occurs following engagement of various ITAM- and non-ITAM-linked receptors and can play positive and negative roles following receptor engagement. LAT binds PLCγ directly, resulting in efficient Ca(2+) flux and degranulation. However, LAB does not contain a PLCγ-binding motif and only binds PLCγ indirectly, possibly via Grb2, thereby resulting in suboptimal signaling. As LAT can signal more efficiently than LAB, competition between the 2 for space/substrates in the lipid rafts can attenuate signaling. This competition model requires coexpression of LAT; however, LAB is repressive, even in cells lacking substantial LAT expression such as macrophages and mature B cells. The reported interaction between LAB and the ubiquitin E3-ligase c-Cbl suggests 1 possible mechanism for LAT-independent inhibition by LAB, but such a model requires further investigation. Given the wide-reaching expression pattern of LAB, LAB has the ability to modulate signaling in virtually every type of leukocyte. Regardless of its ultimate mode of action, the potent regulatory capability of LAB proves this protein to be a complex adaptor that warrants continued, substantial scrutiny by biochemists and immunologists alike

    In vivo expression of signaling proteins in reconstituted NK cells.

    No full text
    Natural Killer cells are cells of the innate immune system that are important for the recognition and clearance of virally infected cells or tumors. Examination of the development and signaling of these cells has been severely hampered due to an inability to over-express proteins in these cells. We developed a novel technique to generate NK cells in vivo, all of which express a gene of interest. IL2Rγ(c)(-/-)/Rag2(-/-) mice do not develop NK cells due to the lack of IL15 signaling. We infected bone marrow from IL2Rγ(c)(-/-)/Rag2(-/-) mice with a retroviral construct encoding EGFP and IL2Rγ(c) connected by an IRES. NK cells selectively developed through expression of IL2Rγ(c) and 100% of these NK cells were found to be EGFP(+). In order to test the utilization of this method to examine the function of biologically relevant proteins, constitutively active PI3K p110γ and p110δ isoforms were over-expressed in this system. Constitutively active p110γ revealed profound effects on NK cell development and function in vivo while p110δ had little effect

    Lack of KIR3DS1 binding to MHC class I Bw4 tetramers in complex with CD8+ T cell epitopes.

    No full text
    In HIV-1 infection, the synergistic association of a subset of Bw4 MHC class I molecules and the activating killer inhibitory receptor (KIR), KIR3DS1, with prolonged AIDS-free survival has been reported. As KIRs represent a diverse group of MHC class I receptors, we questioned whether Bw4 MHC class I molecules expressing isoleucine at position 80 (Bw4Ile80) and in complex with HIV-1-derived T cell epitopes represented KIR3DS1 ligands. MHC class I tetramers are powerful tools for the detection of T cell receptor-MHC class I interactions, and have recently been used to evaluate KIR-MHC class I binding ex vivo. Specifically, this approach has been successfully utilized to assess binding of Bw4 MHC class I tetramers to KIR3DL1, an inhibitory KIR and allele of KIR3DS1. In this study we generated a diverse panel of HIV-1-specific Bw4Ile80 MHC class I tetramers and tested its ability to bind transiently expressed KIR3DS1 on 293-T cells. Using flow cytometry analysis, the expression of KIR3DS1 on 293-T cells was confirmed by anti-FLAG BioM2 staining, prior to incubation with PE-conjugated MHC class I tetramers. Despite choosing a broad array of peptide epitopes and diverse Bw4Ile80 MHC class I molecules, we were unable to detect tetramer binding to KIR3DS1. We speculate that our negative finding may be a consequence of the MHC class I molecules and peptide epitopes chosen, but could also relate to key amino acid differences that distinguish KIR3DS1 from KIR3DL1

    Implications for gene therapy-limiting expression of IL-2R gamma c delineate differences in signaling thresholds required for lymphocyte development and maintenance.

    No full text
    X-linked SCID patients are deficient in functional IL-2Rγc leading to the loss of IL-2/IL-4/IL-7/IL-9/IL-15/IL-21 signaling and a lack of NK and mature T cells. Patients treated with IL-2Rγc gene therapy have T cells develop; however, their NK cell numbers remain low, suggesting antiviral responses may be compromised. Similarly, IL-2Rγc−/− mice reconstituted with IL-2Rγc developed few NK cells, and reconstituted T cells exhibited defective proliferative responses suggesting incomplete recovery of IL-2Rγc signaling. Given the shift toward self-inactivating long terminal repeats with weaker promoters to control the risk of leukemia, we assessed NK and T cell numbers and function in IL-2Rγc−/− mice reconstituted with limiting amounts of IL-2Rγc. Reconstitution resulted in lower IL-2/-15–mediated STAT5 phosphorylation and proliferation in NK and T cells. However, TCR costimulation restored cytokine-driven T cell proliferation to wild-type levels. Vector modifications that improved IL-2Rγc levels increased cytokine-induced STAT5 phosphorylation in both populations and increased NK cell proliferation demonstrating that IL-2Rγc levels are limiting. In addition, although the half-lives of both NK and T cells expressing intermediate levels of IL-2Rγc are reduced compared with wild-type cells, the reduction in NK cell half-live is much more severe than in T cells. Collectively, these data indicate different IL-2Rγc signaling thresholds for lymphocyte development and proliferation making functional monitoring imperative during gene therapy. Further, our findings suggest that IL-2Rγc reconstituted T cells may persist more efficiently than NK cells due to compensation for suboptimal IL-2Rγc signaling by the TCR
    • …
    corecore