90 research outputs found

    Towards an institutional PLE

    No full text
    PLEs in their broader sense (the ad-hoc, serendipitous and potentially chaotic set of tools that learners bring to their learning) are increasingly important for learners in the context of formal study. In this paper we outline the approach that we are taking at the University of Southampton in redesigning our teaching and learning infrastructure into an Institutional PLE. We do not see this term as an oxymoron. We define an Institutional PLE as an environment that provides a personalised interface to University data and services and at the same time exposes that data and services to a student’s personal tools. Our goal is to provide a digital platform that can cope with an evolving learning and teaching environment, as well as support the social and community aspects of the institution

    Leucaena Toxicity: A New Perspective on the Most Widely Used Forage Tree Legume

    Get PDF
    The tree legume Leucaena leucocephala (leucaena) is a high quality ruminant feed, vitally important for livestock production in the tropics despite the presence of mimosine in the leaves. This toxic non-protein amino acid has the potential to limit productivity and adversely affect the health of animals. The discovery and subsequent distribution in Australia of the ruminal bacterium Synergistes jonesii as an oral inoculum was shown in the 1980s to overcome these toxic effects. However, recent surveys of the status of toxicity worldwide; improved understanding of the chemistry and mode of action of the toxins; new techniques for molecular sequencing; and concerns about the efficacy of the in vitro inoculum; have cast doubt on some past understanding of leucaena toxicity and provides new insights into the geographical spread of S. jonesii. There is also confusion and ignorance regarding the occurrence and significance of toxicity in many countries worldwide. Ongoing research into the taxonomy and ecology of the Synergistes phylum, improved methods of inoculation, improved management solutions, along with awareness-raising extension activities, are vital for the future success of leucaena feeding systems

    The Efficacy of \u3cem\u3ein vitro Synergistes jonesii\u3c/em\u3e Inoculum in Preventing DHP Toxicity in Steers Fed Leucaena-Grass Diets

    Get PDF
    Leucaena leucocephala (leucaena) is a valuable forage tree legume for tropical animal production that contains the toxin mimosine. The breakdown products of mimosine in ruminants (3,4-DHP and 2,3-DHP) can adversely affect their health and limit weight gains (Jones and Hegarty 1984). The rumen bacterium Synergistes jonesii, introduced into Australia in 1983 was shown to completely and rapidly degrade these toxins to safe levels (Jones and Megarrity 1986). Since 1996, an in vitro produced inoculum has been made commercially available to Australian graziers (Klieve et al. 2002). Accordingly, the issue of leucaena toxicity in Australia was thought to be resolved. However, extensive testing in 2004 found that up to 50% of Queensland cattle herds consuming leucaena were excreting high levels of urinary DHP suggesting sub-clinical toxicity remained an issue for graziers (Dalzell et al. 2012). Some of these herds had previously been inoculated with in vitro S. jonesii suggesting the inoculum may not be able to either persist within a herd, or remain effective in degrading DHP. The aim of this study was to assess the capability of the in vitro S. jonesii inoculum to efficiently break down DHP in a controlled feeding trial environment

    The community structure and microbial linkage of rumen protozoa and methanogens in response to the addition of tea seed saponins in the diet of beef cattle

    Get PDF
    © 2020 The Author(s). Background: This study investigated changes in rumen protozoal and methanogenic communities, along with the correlations among microbial taxa and methane (CH4) production of six Belmont Red Composite beef steers fed tea seed saponins (TSS). Animals were fed in three consecutive feeding periods, a high-grain basal diet for 14 d (BD period) then a period of progressive addition of TSS to the basal diet up to 30 g/d for 20 d (TSS period), followed by the basal diet for 13 d without TSS (BDP post-control period). Results: The study found that TSS supplementation decreased the amount of the protozoal genus Entodinium and increased Polyplastron and Eudiplodinium genera. During BDP period, the protozoa community of steers did not return to the protozoal profiles observed in BD period, with higher proportions of Metadinium and Eudiplodinium and lower Isotricha. The addition of TSS was found to change the structure of methanogen community at the sub-genus level by decreasing the abundance of methanogens in the SGMT clade and increasing the abundance of methanogens in the RO clade. The correlation analysis indicated that the abundance of SGMT clade methanogens were positively correlated with Isotricha, and Isotricha genus and SGMT clade methanogens were positively correlated with CH4 production. While RO clade were positively correlated with the proportion of Metadinium genus, which was negatively correlated with CH4 emission. Conclusions: These results suggest that different genera of rumen protozoa ciliates appear to be selectively inhibited by TSS, and the change in methanogen community at the subgenus level may be due to the mutualistic relationships between methanogens and rumen ciliates

    Is There Genetic Diversity in the ‘Leucaena Bug’ \u3cem\u3eSynergistes jonesii\u3c/em\u3e Which May Reflect Ability to Degrade Leucaena Toxins?

    Get PDF
    Leucaena leucocephala, a nutritionally rich forage tree legume, contains a non-protein amino acid, mimosine, which is degraded by ruminal bacteria to toxic metabolites 3,4-DHP and 2,3-DHP resulting in goitre-like symptoms in animals, severely restricting weight gain. Raymond Jones, in the early 1980s, discovered the ‘leucaena bug’ in the rumen of goats in Hawaii that degraded these toxic DHP metabolites into non-toxic compounds (Jones and Lowry 1984) which was named Synergistes jonesii (Allison et al. 1992) Subsequently, a rumen inoculum containing S. jonesii was used as an ‘oral drench’ for cattle, kept in continuous culture (Klieve et al. 2002) and supplied to farmers to dose cattle foraging on leucaena. Studies on Queensland herds that received this oral drench showed that up to 50% of 44 herds grazing on leucaena had apparent subclinical toxicity based on high 3,4- and 2,3-DHP excretion in urine (Dalzell et al., 2012). In another study by Graham et al. (2013), a 16S rDNA nested PCR showed that rumen digesta from 6 out of 8 properties tested had a variant DNA profile from S. jonesii ATCC 78.1 strain, which suggested a different strain of the bacterium. It was postulated that either the continually cultured oral inoculum may have undergone genetic modification and/or that animals could harbor other DHP degrading bacteria or S. jonesii strains with differential DHP degrading potential (McSweeney et al. unpublished). The present study looks at changes in the 16S rDNA gene at the molecular level that may suggest divergence from the type strain S. jonesii 78.1 (ATCC) in Queensland cattle as well as in cattle and other ruminants, internationally. These changes can appear as discrete mutations or ‘single nucleotide polymorphisms’ (SNPs) and may be correlated to their ability to degrade DHP, relative to the type strain

    Defluorination of Sodium Fluoroacetate by Bacteria from Soil and Plants in Brazil

    Get PDF
    The aim of this work was to isolate and identify bacteria able to degrade sodium fluoroacetate from soil and plant samples collected in areas where the fluoroacetate-containing plants Mascagnia rigida and Palicourea aenofusca are found. The samples were cultivated in mineral medium added with 20 mmol L−1 sodium fluoroacetate. Seven isolates were identified by 16S rRNA gene sequencing as Paenibacillus sp. (ECPB01), Burkholderia sp. (ECPB02), Cupriavidus sp. (ECPB03), Staphylococcus sp. (ECPB04), Ancylobacter sp. (ECPB05), Ralstonia sp. (ECPB06), and Stenotrophomonas sp. (ECPB07). All seven isolates degraded sodium-fluoroacetate-containing in the medium, reaching defluorination rate of fluoride ion of 20 mmol L−1. Six of them are reported for the first time as able to degrade sodium fluoroacetate (SF). In the future, some of these microorganisms can be used to establish in the rumen an engineered bacterial population able to degrade sodium fluoroacetate and protect ruminants from the poisoning by this compound

    Prevalence of DHP Toxicity and Detection of \u3cem\u3eS. jonesii\u3c/em\u3e in Ruminants Consuming \u3cem\u3eLeucaena leucocephala\u3c/em\u3e in Eastern Indonesia

    Get PDF
    Leucaena leucocephala (leucaena) is a productive forage tree legume widely used in eastern Indonesia. While highly nutritious, it possesses the toxin mimosine which adversely affects animal production. In ruminants, mimosine is readily converted to the two isomers of dihydroxypyridine (3,4-DHP and 2,3-DHP) known to cause goitre, suppress appetite, and cause severe mineral deficiencies. These adverse symptoms may be partially responsible for the reluctance of some farmers to feed leucaena. A bacterium capable of complete degradation of DHP, Synergistes jonesii, originally discovered in Hawaii in goats consuming leucaena (Jones and Megarrity 1986), was later found in Indonesia which led to the assumption that all Indonesian ruminants were protected from leucaena toxicity even on 100% leucaena diets. The objective of this study, conducted during October-November 2011, was to confirm this hypothesis via an extensive survey of the toxicity status of ruminants consuming leucaena in eastern Indonesia

    Effect of conditioning regimen intensity on CMV infection in allogeneic hematopoietic cell transplantation.

    Get PDF
    Nonmyeloablative conditioning is less toxic and results in initial establishment of mixed hematopoietic T cell chimerism for up to half a year with prolonged presence of host T cell immunity. In this study, we examined whether this translates into differences in the risks and/or severity of cytomegalovirus (CMV) infection and disease. We analyzed data from 537 nonmyeloablative (NM-HCT) and contemporaneous 2489 myeloablative hematopoietic cell transplant (M-HCT) recipients. In CMV seropositive recipients, no difference in the overall hazards of CMV infection at any level (adjusted hazard ratio [adj. HR] 0.9, 95% confidence interval [95% CI]: 0.7-1.0, P = .14) was noted; however, NM-HCT was associated with a lower risk of high-grade CMV infection (adj. HR 0.7, 95% CI: 0.5-0.9, P = .02). CMV disease rates were similar between the groups during the first 100 days after HCT, but NM-HCT recipients had an increased risk of late CMV disease (adj. HR 2.0, 95% CI 1.2-3.4). The increased risk of late CMV disease after NM-HCT was pronounced during the earlier years of the study period, but not detectable in more recent years. Contrary to earlier reports, survival following CMV disease was not reduced after NM-HCT when compared to M-HCT recipients. These results suggest that residual host cells after NM-HCT reduce progression to higher CMV viral load in NM-HCT recipients; however, this effect does not appear to protect against serious complications of CMV. Therefore, CMV prevention strategies in NM-HCT recipients should be similar to those used in M-HCT recipients

    “A very orderly retreat”: Democratic transition in East Germany, 1989-90

    Get PDF
    East Germany's 1989-90 democratisation is among the best known of East European transitions, but does not lend itself to comparative analysis, due to the singular way in which political reform and democratic consolidation were subsumed by Germany's unification process. Yet aspects of East Germany's democratisation have proved amenable to comparative approaches. This article reviews the comparative literature that refers to East Germany, and finds a schism between those who designate East Germany's transition “regime collapse” and others who contend that it exemplifies “transition through extrication”. It inquires into the merits of each position and finds in favour of the latter. Drawing on primary and secondary literature, as well as archival and interview sources, it portrays a communist elite that was, to a large extent, prepared to adapt to changing circumstances and capable of learning from “reference states” such as Poland. Although East Germany was the Soviet state in which the positions of existing elites were most threatened by democratic transition, here too a surprising number succeeded in maintaining their position while filing across the bridge to market society. A concluding section outlines the alchemy through which their bureaucratic power was transmuted into property and influence in the “new Germany”

    Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection

    Get PDF
    Productivity of ruminant livestock depends on the rumen microbiota, which ferment indigestible plant polysaccharides into nutrients used for growth. Understanding the functions carried out by the rumen microbiota is important for reducing greenhouse gas production by ruminants and for developing biofuels from lignocellulose. We present 410 cultured bacteria and archaea, together with their reference genomes, representing every cultivated rumen-associated archaeal and bacterial family. We evaluate polysaccharide degradation, short-chain fatty acid production and methanogenesis pathways, and assign specific taxa to functions. A total of 336 organisms were present in available rumen metagenomic data sets, and 134 were present in human gut microbiome data sets. Comparison with the human microbiome revealed rumen-specific enrichment for genes encoding de novo synthesis of vitamin B12, ongoing evolution by gene loss and potential vertical inheritance of the rumen microbiome based on underrepresentation of markers of environmental stress. We estimate that our Hungate genome resource represents ?75% of the genus-level bacterial and archaeal taxa present in the rumen.publishersversionPeer reviewe
    corecore