15 research outputs found

    Minimally Invasive Pharmacokinetic and Pharmacodynamic Technologies in Hypothesis-Testing Clinical Trials of Innovative Therapies

    Get PDF
    Clinical trials of new cancer drugs should ideally include measurements of parameters such as molecular target expression, pharmacokinetic (PK) behavior, and pharmacodynamic (PD) endpoints that can be linked to measures of clinical effect. Appropriate PK/PD biomarkers facilitate proof-of-concept demonstrations for target modulation; enhance the rational selection of an optimal drug dose and schedule; aid decision-making, such as whether to continue or close a drug development project; and may explain or predict clinical outcomes. In addition, measurement of PK/PD biomarkers can minimize uncertainty associated with predicting drug safety and efficacy, reduce the high levels of drug attrition during development, accelerate drug approval, and decrease the overall costs of drug development. However, there are many challenges in the development and implementation of biomarkers that probably explain their disappointingly low implementation in phase I trials. The Pharmacodynamic/Pharmacokinetic Technologies Advisory committee of Cancer Research UK has found that submissions for phase I trials of new cancer drugs in the United Kingdom often lack detailed information about PK and/or PD endpoints, which leads to suboptimal information being obtained in those trials or to delays in starting the trials while PK/PD methods are developed and validated. Minimally invasive PK/PD technologies have logistic and ethical advantages over more invasive technologies. Here we review these technologies, emphasizing magnetic resonance spectroscopy and positron emission tomography, which provide detailed functional and metabolic information. Assays that measure effects of drugs on important biologic pathways and processes are likely to be more cost-effective than those that measure specific molecular targets. Development, validation, and implementation of minimally invasive PK/PD methods are encourage

    Use of Epothilone B (Patupilone) in Refractory Lymphoma and advanced solid tumors in dogs

    Full text link
    Background: The epothilones are microtubule-stabilizing agents with promising antitumor effect in refractory and metastatic tumors in humans. The toxicity profile is considered more favorable than in taxanes. The safety of epothilone B (patupilone) has not been evaluated in tumor-bearing dogs. Objectives: To evaluate the inhibition of proliferation in canine tumor cells after patupilone treatment. To assess toxicity profile and maximally tolerated dose of patupilone in dogs with refractory tumors. Animals: Twenty client-owned dogs with various malignancies. Methods: The inhibition of proliferation was assessed with a proliferation assay in vitro in canine hemangiosarcoma and lymphoma cell lines. In the prospective clinical study, dogs received patupilone intravenously once a week for two treatments (= one treatment cycle). Dose was escalated with three dogs per cohort and 20% increments. Adverse effects were graded according to the VCOG-CTCAE v1.0. Results: Both canine cell lines were sensitive to patupilone with approximately 50% decrease of proliferative activity at 0.2-1 nM. In vivo, dose-limiting adverse effects occurred at 3.3 mg/m2; main adverse effects were diarrhea, anorexia, vomiting, and nausea. Neither neutropenia nor peripheral neuropathy was observed. Maximally tolerated dose for two patupilone administrations once weekly IV is 2.76 mg/m2. 3/11 dogs receiving more than one treatment cycle showed partial remission in the short period of observation. Conclusions and Clinical Importance: Canine tumor cells show inhibition of proliferation to patupilone in vitro. Clinically, a dose of 2.76 mg/m2 IV is well tolerated in dogs with spontaneously occurring tumors

    Adaptation to HIF-1 deficiency by upregulation of the AMP/ATP ratio and phosphofructokinase activation in hepatomas

    Get PDF
    Background HIF-1 deficiency has marked effects on tumour glycolysis and growth. We therefore investigated the consequences of HIF-1 deficiency in mice, using the well established Hepa-1 wild-type (WT) and HIF-1β-deficient (c4) model. These mechanisms could be clinically relevant, since HIF-1 is now a therapeutic target. Methods Hepa-1 WT and c4 tumours grown in vivo were analysed by 18FDG-PET and 19FDG Magnetic Resonance Spectroscopy for glucose uptake; by HPLC for adenine nucleotides; by immunohistochemistry for GLUTs; by immunoblotting and by DIGE followed by tandem mass spectrometry for protein expression; and by classical enzymatic methods for enzyme activity. Results HIF-1β deficient Hepa-1 c4 tumours grew significantly more slowly than WT tumours, and (as expected) showed significantly lower expression of many glycolytic enzymes. However, HIF-1β deficiency caused no significant change in the rate of glucose uptake in c4 tumours compared to WT when assessed in vivo by measuring fluoro-deoxyglucose (FDG) uptake. Immunohistochemistry demonstrated less GLUT-1 in c4 tumours, whereas GLUT-2 (liver type) was similar to WT. Factors that might upregulate glucose uptake independently of HIF-1 (phospho-Akt, c-Myc) were shown to have either lower or similar expression in c4 compared to WT tumours. However the AMP/ATP ratio was 4.5 fold higher (p < 0.01) in c4 tumours, and phosphofructokinase-1 (PFK-1) activity, measured at prevailing cellular ATP and AMP concentrations, was up to two-fold higher in homogenates of the deficient c4 cells and tumours compared to WT (p < 0.001), suggesting that allosteric PFK activation could explain their normal level of glycolysis. Phospho AMP-Kinase was also higher in the c4 tumours. Conclusions Despite their defective HIF-1 and consequent down-regulation of glycolytic enzyme expression, Hepa-1 c4 tumours maintain glucose uptake and glycolysis because the resulting low [ATP] high [AMP] allosterically activate PFK-1. This mechanism of resistance would keep glycolysis functioning and also result in activation of AMP-Kinase and growth inhibition; it may have major implications for the therapeutic activity of HIF inhibitors in vivo. Interestingly, this control mechanism does not involve transcriptional control or proteomics, but rather the classical activation and inhibition mechanisms of glycolytic enzymes

    Everolimus augments the effects of sorafenib in a syngeneic orthotopic model of hepatocellular carcinoma

    Get PDF
    Sorafenib targets the Raf/mitogen-activated protein kinase, VEGF, and platelet-derived growth factor pathways and prolongs survival patients in advanced hepatocellular carcinoma (HCC). Everolimus inhibits the mammalian target of rapamycin, a kinase overactive in HCC. To investigate whether the antitumor effects of these agents are additive, we compared a combined and sequential treatment regimen of everolimus and sorafenib with monotherapy. After hepatic implantation of Morris Hepatoma (MH) cells, rats were randomly allocated to everolimus (5 mg/kg, 2Ă—/week), sorafenib (7.5 mg/kg/d), combined everolimus and sorafenib, sequential sorafenib (2 weeks) then everolimus (3 weeks), or control groups. MRI quantified tumor volumes. Erk1/2, 4E-BP1, and their phosphorylated forms were quantified by immunoblotting. Angiogenesis was assessed in vitro by aortic ring and tube formation assays, and in vivo with Vegf-a mRNA and vascular casts. After 35 days, tumor volumes were reduced by 60%, 85%, and 55%, relative to controls, in everolimus, the combination, and sequential groups, respectively (P > 0.01). Survival was longest in the combination group (P > 0.001). Phosphorylation of 4E-BP1 and Erk1/2 decreased after everolimus and sorafenib, respectively. Angiogenesis decreased after all treatments (P > 0.05), although sorafenib increased Vegf-a mRNA in liver tumors. Vessel sprouting was abundant in control tumors, lower after sorafenib, and absent after the combination. Intussusceptive angiogenic transluminal pillars failed to coalesce after the combination. Combined treatment with everolimus and sorafenib exerts a stronger antitumoral effect on MH tumors than monotherapy. Everolimus retains antitumoral properties when administered sequentially after sorafenib. This supports the clinical use of everolimus in HCC, both in combination with sorafenib or after sorafenib

    PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo

    No full text
    Assessment of tumour vascularity may characterize malignancy as well as predict responsiveness to anti-angiogenic therapy. Non-invasive measurement of tumour perfusion and blood vessel permeability assessed as the transfer constant, K(trans), can be provided by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Using the orthotopic murine tumour model B16/BL6 melanoma, the small contrast agent GdDOTA (DOTAREM(R); Guerbet, Paris) was applied to assess the vascular transfer constant, K(trans), and interstitial leakage space, whereas intravascular iron oxide nanoparticles (Endorem(R); Guerbet, Paris) were used to detect relative tumour blood volume (rTBV), and in one experiment blood flow index (BFI). No correlations were observed between these four parameters (r(2) always <0.05). The B16/BL6 primary tumour and lymph-node cervical (neck) metastases produced high levels of the permeability/growth factor, VEGF. To probe the model, the novel VEGF receptor (VEGF-R) tyrosine kinase inhibitor, PTK787/ZK222584 (PTK/ZK) was tested for anti-tumour efficacy and its effects on DCE-MRI measured parameters of tumour vascularity. Data from the non-invasive measure of tumour vascularity were compared with a histological measurement of vasculature using the DNA-staining dye H33342. PTK/ZK inhibited growth of the primary and, particularly, cervical tumour metastases following chronic treatment for 2 weeks (50 or 100 mg/kg daily) of 1-week-old tumours, or with 1 week of treatment against more established (2-week-old) tumours. After chronic treatment with PTK/ZK, DCE-MRI detected significant decreases in K(trans) and interstitial leakage space, but not rTBV of both primary tumours and cervical metastases. Histological data at this time-point showed a significant decrease in blood vessel density of the cervical metastases but not the primary tumours. However, in the cervical metastases, the mean blood vessel width was increased by 38%, suggesting overall no marked change in blood volume. After acute (2-4 day) treatment, DCE-MRI of the cervical metastases demonstrated a significant decrease in K(trans) and interstitial leakage space and also in the initial area under the enhancement curve for GdDOTA (IAUC), but no change in the rTBV or BFI. Thus, significant changes could be detected in the DCE-MRI measurement of tumour uptake of a small contrast agent prior to changes in tumour size, which suggests that DCE-MRI could be applied in the clinic as a rapid and sensitive biomarker for the effects of VEGF-R inhibition on tumour blood vessel permeability and thus may provide an early marker for eventual tumour response
    corecore