19 research outputs found

    IL-1β, IL-6, and RANTES as Biomarkers of Chikungunya Severity

    Get PDF
    Little is known about the immunopathogenesis of Chikungunya virus. Circulating levels of immune mediators and growth factors were analyzed from patients infected during the first Singaporean Chikungunya fever outbreak in early 2008 to establish biomarkers associated with infection and/or disease severity.Adult patients with laboratory-confirmed Chikungunya fever infection, who were referred to the Communicable Disease Centre/Tan Tock Seng Hospital during the period from January to February 2008, were included in this retrospective study. Plasma fractions were analyzed using a multiplex-microbead immunoassay. Among the patients, the most common clinical features were fever (100%), arthralgia (90%), rash (50%) and conjunctivitis (40%). Profiles of 30 cytokines, chemokines, and growth factors were able to discriminate the clinical forms of Chikungunya from healthy controls, with patients classified as non-severe and severe disease. Levels of 8 plasma cytokines and 4 growth factors were significantly elevated. Statistical analysis showed that an increase in IL-1beta, IL-6 and a decrease in RANTES were associated with disease severity.This is the first comprehensive report on the production of cytokines, chemokines, and growth factors during acute Chikungunya virus infection. Using these biomarkers, we were able to distinguish between mild disease and more severe forms of Chikungunya fever, thus enabling the identification of patients with poor prognosis and monitoring of the disease

    Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks

    Get PDF
    It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level

    High-Throughput MicroRNA (miRNAs) Arrays Unravel the Prognostic Role of MiR-211 in Pancreatic Cancer

    Get PDF
    BACKGROUND: Only a subset of radically resected pancreatic ductal adenocarcinoma (PDAC) patients benefit from chemotherapy, and identification of prognostic factors is warranted. Recently miRNAs emerged as diagnostic biomarkers and innovative therapeutic targets, while high-throughput arrays are opening new opportunities to evaluate whether they can predict clinical outcome. The present study evaluated whether comprehensive miRNA expression profiling correlated with overall survival (OS) in resected PDAC patients. METHODOLOGY/PRINCIPAL FINDINGS: High-resolution miRNA profiles were obtained with the Toray's 3D-Gene™-miRNA-chip, detecting more than 1200 human miRNAs. RNA was successfully isolated from paraffin-embedded primary tumors of 19 out of 26 stage-pT3N1 homogeneously treated patients (adjuvant gemcitabine 1000 mg/m(2)/day, days-1/8/15, every 28 days), carefully selected according to their outcome (OS<12 (N = 13) vs. OS>30 months (N = 6), i.e. short/long-OS). Highly stringent statistics included t-test, distance matrix with Spearman-ranked correlation, and iterative approaches. Unsupervised hierarchical analysis revealed that PDACs clustered according to their short/long-OS classification, while the feature selection algorithm RELIEF identified the top 4 discriminating miRNAs between the two groups. These miRNAs target more than 1500 transcripts, including 169 targeted by two or more. MiR-211 emerged as the best discriminating miRNA, with significantly higher expression in long- vs. short-OS patients. The expression of this miRNA was subsequently assessed by quantitative-PCR in an independent cohort of laser-microdissected PDACs from 60 resected patients treated with the same gemcitabine regimen. Patients with low miR-211 expression according to median value had a significantly shorter median OS (14.8, 95%CI = 13.1-16.5, vs. 25.7 months, 95%CI = 16.2-35.1, log-rank-P = 0.004). Multivariate analysis demonstrated that low miR-211 expression was an independent factor of poor prognosis (hazard ratio 2.3, P = 0.03) after adjusting for all the factors influencing outcome. CONCLUSIONS/SIGNIFICANCE: Through comprehensive microarray analysis and PCR validation we identified miR-211 as a prognostic factor in resected PDAC. These results prompt further prospective studies and research on the biological role of miR-211 in PDAC

    Exploring hierarchical concepts: theoretical and application comparisons

    No full text
    Phenomena are usually multidimensional and their complexity cannot be directly explored via observable variables. For this reason, a hierarchical structure of nested latent concepts representing different levels of abstraction of the phenomenon under study may be considered. In this paper, we provide a comparison between a procedure based on hierarchical clustering methods and a novelty model recently proposed, called Ultrametric Correlation Matrix (UCM) model. The latter aims at reconstructing the data correlation matrix via an ultrametric correlation matrix and supplies a parsimonious representation of multidimensional phenomena through a partition of the observable variables defining a reduced number of latent concepts. Moreover, the UCM model highlights two main features related to concepts: the correlation among concepts and the internal consistency of a concept. The performances of the UCM model and the procedure based on hierarchical clustering methods are illustrated by an application to the Holzinger data set which represents a real demonstration of a hierarchical factorial structure. The evaluation of the different methodological approaches—the UCM model and the procedure based on hierarchical clustering methods—is provided in terms of classification of variables and goodness of fit, other than of their suitability to analyse bottom-up latent structures of variables

    Finding Evidence for Local Transmission of Contagious Disease in Molecular Epidemiological Datasets

    Get PDF
    <p>Surveillance systems of contagious diseases record information on cases to monitor incidence of disease and to evaluate effectiveness of interventions. These systems focus on a well-defined population; a key question is whether observed cases are infected through local transmission within the population or whether cases are the result of importation of infection into the population. Local spread of infection calls for different intervention measures than importation of infection. Besides standardized information on time of symptom onset and location of cases, pathogen genotyping or sequencing offers essential information to address this question. Here we introduce a method that takes full advantage of both the genetic and epidemiological data to distinguish local transmission from importation of infection, by comparing inter-case distances in temporal, spatial and genetic data. Cases that are part of a local transmission chain will have shorter distances between their geographical locations, shorter durations between their times of symptom onset and shorter genetic distances between their pathogen sequences as compared to cases that are due to importation. In contrast to generic clustering algorithms, the proposed method explicitly accounts for the fact that during local transmission of a contagious disease the cases are caused by other cases. No pathogen-specific assumptions are needed due to the use of ordinal distances, which allow for direct comparison between the disparate data types. Using simulations, we test the performance of the method in identifying local transmission of disease in large datasets, and assess how sensitivity and specificity change with varying size of local transmission chains and varying overall disease incidence.</p>
    corecore