9 research outputs found

    Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM

    Get PDF
    Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae (Sc_IGPD) and Arabidopsis thaliana (At_IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure–activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_IGPD than At_IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Å are sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_IGPD/C348 complex. The structure of Sc_IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding

    Development of a triclosan scaffold which allows for adaptations on both the A- and B-ring for transport peptides

    Get PDF
    The enoyl acyl-carrier protein reductase (ENR) enzyme is harbored within the apicoplast of apicomplexan parasites providing a significant challenge for drug delivery, which may be overcome through the addition of transductive peptides, which facilitates crossing the apicoplast membranes. The binding site of triclosan, a potent ENR inhibitor, is occluded from the solvent making the attachment of these linkers challenging. Herein, we have produced 3 new triclosan analogs with bulky A- and B-ring motifs, which protrude into the solvent allowing for the future attachment of molecular transporters for delivery

    From TgO/GABA-AT, GABA, and T-263 mutant to conception of Toxoplasma

    Get PDF
    Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat’s oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with “Rosetta stone”-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite’s capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease

    Developments in Non-Intercalating Bacterial Topoisomerase Inhibitors: Allosteric and ATPase Inhibitors of DNA Gyrase and Topoisomerase IV

    No full text
    Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However, these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymorphisms in the active site. Significant research has been undertaken searching for novel bioactive molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoisomerases through alternate mechanisms. This review summarises work looking at the inhibition of topoisomerases predominantly through non-intercalating agents, including those acting at a novel allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms of action

    An in silico

    No full text

    Elucidating the structural basis for differing enzyme inhibitor potency by cryo-EM

    Get PDF
    Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae (Sc_IGPD) and Arabidopsis thaliana (At_IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure–activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_IGPD than At_IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Å are sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_IGPD/C348 complex. The structure of Sc_IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding

    From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma

    No full text
    Summary: Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat’s oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with “Rosetta stone”-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite’s capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease

    The benzimidazole based drugs show good activity against T. gondii but poor activity against its proposed enoyl reductase enzyme target

    Get PDF
    The enoyl acyl-carrier protein reductase (ENR) enzyme of the apicomplexan parasite family has been intensely studied for antiparasitic drug design for over a decade, with the most potent inhibitors targeting the NAD(+) bound form of the enzyme. However, the higher affinity for the NADH co-factor over NAD(+) and its availability in the natural environment makes the NADH complex form of ENR an attractive target. Herein, we have examined a benzimidazole family of inhibitors which target the NADH form of Francisella ENR, but despite good efficacy against Toxoplasma gondii, the IC50 for T. gondii ENR is poor, with no inhibitory activity at 1μM. Moreover similar benzimidazole scaffolds are potent against fungi which lack the ENR enzyme and as such we believe that there may be significant off target effects for this family of inhibitors
    corecore