16 research outputs found

    The Subduction experiment : cruise report R/V Oceanus cruise number 250 legs 1 and 2 subduction 2 mooring deployment and recovery cruise, 25 January-26 February 1992

    Get PDF
    Subduction is the mechanism by which water masses formed in the mixed layer and near the surface of the ocean find their way into the upper thermocline. The subduction process and its underlying mechanisms were studied through a combination of Eulerian and Langrangian measurements of velocity, measurements of tracer distrbutions and hydrographic propertes and modeling. An array of five surface moorings carrying meteorological and oceanographic instrumentation were deployed for a period of two years beginning in June 1991 as part of an Office of Naval Research (ONR) funded Subduction experiment. Three eight month deployments were planned. The initial deployment of five surface moorings took place during the third leg of R/V Oceanus cruise number 240. The moorings were deployed at 18°N 34°W, 18°N 22°W, 25.5°N 29°W, 33°N 22°W and 33°N 34°W. A Vector Averaging Wind Recorder (VAWR) and an Improved Meteorological Recorder (IMET) collected wind speed and wind direction, sea surface temperature, air temperature, short wave radiation, barometric pressure and relative humidity. The IMET also measured precipitation. The moorings were heavily instrumented below the surface with Vector Measuring Current Meters (VMCM) and single point temperature recorders. Expendable bathythermograph (XBT) data were collected and meteorological observations were made while transitting between mooring locations. This report describes the work that took place during R/V Oceanus cruise 250 which was the second scheduled Subduction mooring cruise. During this cruise the first setting of the moorings were recovered and redeployed for a second eight month period. This report includes a description of the instrumentation that was deployed and recovered, has information about the underway measurements (XBT and meteorological observations) that were made including plots of the data and presents a chronology of the cruise events.Funding was provided by the Office of Naval Research under contract N00014-90-J-1490

    The Subduction experiment : cruise report RRS Charles Darwin cruise number 73 subduction 3 mooring deployment and recovery cruise, 30 September-26 October 1992

    Get PDF
    Subduction is the mechanism by which water masses formed in the mixed layer and near the surface of the ocean find their way into the upper thermocline. The subduction process and its underlying mechanisms were studied through a combination of Eulerian and Langrangian measurements of velocity, measurements of tracer distrbutions and hydrographic properties and modeling. An array of five surface moorings carrying meteorological and oceanographic instrumentation were deployed for a period of two years beginning in June 1991 as part of an Office of Naval Research (ONR) funded Subduction experiment. Three eight month deployments were planned. The moorings were deployed at 18°N 34°W, 18°N 22°W, 25.5°N 29°W, 33°N 22°W and 33°N 34°W. A Vector Averaging Wind Recorder (VAWR) and an Improved Meteorological Recorder (IMET) collected wind speed and wind direction, sea surface temperature, air temperature, short wave radiation, barometric pressure and relative humidity. The IMET also measured precipitation. The moorings were heavily instrumented below the surface with Vector Measuring Current Meters (VMCM), and single point temperature recorders. Expendable bathythermograph (XBT) data were collected and meteorological observations were made while transitting between mooring locations. In addition a series of 59 cm stations were made and water samples taken to be analyzed for tritium levels, salinity and dissolved oxygen content. This report describes the work that took place during RRS Charles Darwin cruise number 73 which was the third scheduled Subduction mooring cruise. During this cruise the second setting of the moorings were recovered and redeployed for a third eight month period. This report includes a description of the instrumentation that was deployed and recovered, has information about the underway measurements (XBT and meteorological observations) that were made including plots of the data, includes a description of the work conducted in conjunction with the tracer/hydrography program and presents a chronology of the cruise events.Funding was provided by the Office of Naval Research under contract N00014-90-J-1490

    The subduction experiment : cruise report R/V Knorr : cruise number 138 leg XV : subduction 3 mooring recovery cruise, 13-30 June 1993

    Get PDF
    Subduction is the mechanism by which water masses formed in the mixed layer and near the surface of the ocean find their way into the upper thermocline. The subduction process and its underlying mechanisms were studied though a combination of Eulerian and Langrangian measurements of velocity, measurements of tracer distributions and hydrographic properties and modeling. An array of five surface moorings carrying meteorological and oceanographic instrumentation were deployed for a period of two years beginning in June 1991 as part of an Office of Naval Research (ONR) funded Subduction experiment. Three eight month deployments were planned. The moorings were deployed at 18°N 34°W, 18°N 22°W, 25.5°N 29°W, 33°N 22°W and 33°N 34°W. A Vector Averaging Wind Recorder (VAWR) and an Improved Meteorological Recorder (IMET) collected wind speed and wind direction, sea surface temperature, air temperature, short wave radiation, barometric pressure and relative humidity. The IMET also measured precipitation. The moorings were heavily instrumented below the surface with Vector Measuring Current Meters (VMCM) and single point temperature recorders. Expendable bathythermograph (XBT) data were collected and meteorological observations were made while transmitting between mooring locations. This report describes the work that took place during R/V Knorr cruise number 138 leg XV which was the fourth scheduled Subduction mooring cruise. During this cruise the moorings previously deployed for a third and final eight month period were recovered. This report includes a description of the moorings and instrumentation that were recovered, has information about the underway measurements (XBT and meteorological observations) that were made including plots of the data, and presents a chronology of the cruise events.Funding provided by the Office of Naval Research under Contract No. N00014-90-J-1490

    Preliminary acoustic and oceanographic observations from the ASIAEX 2001 South China Sea Experiment

    Get PDF
    The Asian Seas International Experiment (ASIAEX) was a very successful scientific collaboration between the United States of America (USA), the People’s Republic of China (PRC), Taiwan (ROC), the Republic of Korea (ROK), Japan, Russia, and Singapore. Preliminary field experiments associated with ASIAEX began in spring of 2000. The main experiments were performed in April-August, 2001. The scientific plan called for two major acoustics experiments, the first a bottom interaction experiment in the East China Sea (ECS) and the second a volume interaction experiment in the South China Sea (SCS). In addition to the acoustics efforts, there were also extremely strong physical oceanography and geology and geophysics components to the experiments. This report will concentrate on describing the moored component of the South China Sea portion of ASIAEX 2001 performed from the Taiwan Fisheries research vessel FR1 (Fisheries Researcher 1). Information on the environmental moorings deployed from the Taiwanese oceanographic research vessel OR1 (Oceanographic Researcher 1) will also be listed here for completeness, so that the reader can pursue later analyses of the data. This report does not pursue any data analyses per se.Funding was provided by the Office of Naval Research under Grant Numbers N00014-01-1-0772, N00014-98-1-0413 and N00014-00-1-0206

    Acoustics and oceanographic observations collected during the QPE Experiment by Research Vessels OR1, OR2 and OR3 in the East China Sea in the Summer of 2009

    Get PDF
    This document describes data, sensors, and other useful information pertaining to the ONR sponsored QPE field program to quantify, predict and exploit uncertainty in observations and prediction of sound propagation. This experiment was a joint operation between Taiwanese and U.S. researchers to measure and assess uncertainty of predictions of acoustic transmission loss and ambient noise, and to observe the physical oceanography and geology that are necessary to improve their predictability. This work was performed over the continental shelf and slope northeast of Taiwan at two sites: one that was a relatively flat, homogeneous shelf region and a more complex geological site just shoreward of the shelfbreak that was influenced by the proximity of the Kuroshio Current. Environmental moorings and ADCP moorings were deployed and a shipboard SeaSoar vehicle was used to measure environmental spatial structure. In addition, multiple bottom moored receivers and a horizontal hydrophone array were deployed to sample transmission loss from a mobile source and ambient noise. The acoustic sensors, environmental sensors, shipboard resources, and experiment design, and their data, are presented and described in this technical report.Funding was provided by the Office of Naval Research under Contract No. N00014-08-1-076

    Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease

    Get PDF
    Genetic mutations that severely diminish the activity of aspartoacylase (ASPA) result in the fatal brain dysmyelinating disorder, Canavan disease. There is no effective treatment. ASPA produces free acetate from the concentrated brain metabolite, N-acetylaspartate (NAA). Because acetyl coenzyme A is a key building block for lipid synthesis, we postulated that the inability to catabolize NAA leads to a brain acetate deficiency during a critical period of CNS development, impairing myelination and possibly other aspects of brain development. We tested the hypothesis that acetate supplementation during postnatal myelination would ameliorate the severe phenotype associated with ASPA deficiency using the tremor rat model of Canavan disease. Glyceryltriacetate (GTA) was administered orally to tremor rats starting 7 days after birth, and was continued in food and water after weaning. Motor function, myelin lipids, and brain vacuolation were analyzed in GTA-treated and untreated tremor rats. Significant improvements were observed in motor performance and myelin galactocerebroside content in tremor rats treated with GTA. Further, brain vacuolation was modestly reduced, and these reductions were positively correlated with improved motor performance. We also examined the expression of the acetyl coenzyme A synthesizing enzyme acetyl coenzyme A synthase 1 and found upregulation of expression in tremor rats, with a return to near normal expression levels in GTA-treated tremor rats. These results confirm the critical role played by NAA-derived acetate in brain myelination and development, and demonstrate the potential usefulness of acetate therapy for the treatment of Canavan disease

    Global, regional, and national burden of other musculoskeletal disorders, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021

    Get PDF
    Background Musculoskeletal disorders include more than 150 different conditions affecting joints, muscles, bones, ligaments, tendons, and the spine. To capture all health loss from death and disability due to musculoskeletal disorders, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) includes a residual musculoskeletal category for conditions other than osteoarthritis, rheumatoid arthritis, gout, low back pain, and neck pain. This category is called other musculoskeletal disorders and includes, for example, systemic lupus erythematosus and spondylopathies. We provide updated estimates of the prevalence, mortality, and disability attributable to other musculoskeletal disorders and forecasted prevalence to 2050. Methods Prevalence of other musculoskeletal disorders was estimated in 204 countries and territories from 1990 to 2020 using data from 68 sources across 23 countries from which subtraction of cases of rheumatoid arthritis, osteoarthritis, low back pain, neck pain, and gout from the total number of cases of musculoskeletal disorders was possible. Data were analysed with Bayesian meta-regression models to estimate prevalence by year, age, sex, and location. Years lived with disability (YLDs) were estimated from prevalence and disability weights. Mortality attributed to other musculoskeletal disorders was estimated using vital registration data. Prevalence was forecast to 2050 by regressing prevalence estimates from 1990 to 2020 with Socio-demographic Index as a predictor, then multiplying by population forecasts. Findings Globally, 494 million (95% uncertainty interval 431–564) people had other musculoskeletal disorders in 2020, an increase of 123·4% (116·9–129·3) in total cases from 221 million (192–253) in 1990. Cases of other musculoskeletal disorders are projected to increase by 115% (107–124) from 2020 to 2050, to an estimated 1060 million (95% UI 964–1170) prevalent cases in 2050; most regions were projected to have at least a 50% increase in cases between 2020 and 2050. The global age-standardised prevalence of other musculoskeletal disorders was 47·4% (44·9–49·4) higher in females than in males and increased with age to a peak at 65–69 years in male and female sexes. In 2020, other musculoskeletal disorders was the sixth ranked cause of YLDs globally (42·7 million [29·4–60·0]) and was associated with 83 100 deaths (73 600–91 600). Interpretation Other musculoskeletal disorders were responsible for a large number of global YLDs in 2020. Until individual conditions and risk factors are more explicitly quantified, policy responses to this burden remain a challenge. Temporal trends and geographical differences in estimates of non-fatal disease burden should not be overinterpreted as they are based on sparse, low-quality data.publishedVersio

    Physical activity in older age: perspectives for healthy ageing and frailty.

    Get PDF
    Regular physical activity helps to improve physical and mental functions as well as reverse some effects of chronic disease to keep older people mobile and independent. Despite the highly publicised benefits of physical activity, the overwhelming majority of older people in the United Kingdom do not meet the minimum physical activity levels needed to maintain health. The sedentary lifestyles that predominate in older age results in premature onset of ill health, disease and frailty. Local authorities have a responsibility to promote physical activity amongst older people, but knowing how to stimulate regular activity at the population-level is challenging. The physiological rationale for physical activity, risks of adverse events, societal and psychological factors are discussed with a view to inform public health initiatives for the relatively healthy older person as well as those with physical frailty. The evidence shows that regular physical activity is safe for healthy and for frail older people and the risks of developing major cardiovascular and metabolic diseases, obesity, falls, cognitive impairments, osteoporosis and muscular weakness are decreased by regularly completing activities ranging from low intensity walking through to more vigorous sports and resistance exercises. Yet, participation in physical activities remains low amongst older adults, particularly those living in less affluent areas. Older people may be encouraged to increase their activities if influenced by clinicians, family or friends, keeping costs low and enjoyment high, facilitating group-based activities and raising self-efficacy for exercise

    General anaesthetic and airway management practice for obstetric surgery in England: a prospective, multi-centre observational study

    Get PDF
    There are no current descriptions of general anaesthesia characteristics for obstetric surgery, despite recent changes to patient baseline characteristics and airway management guidelines. This analysis of data from the direct reporting of awareness in maternity patients' (DREAMY) study of accidental awareness during obstetric anaesthesia aimed to describe practice for obstetric general anaesthesia in England and compare with earlier surveys and best-practice recommendations. Consenting patients who received general anaesthesia for obstetric surgery in 72 hospitals from May 2017 to August 2018 were included. Baseline characteristics, airway management, anaesthetic techniques and major complications were collected. Descriptive analysis, binary logistic regression modelling and comparisons with earlier data were conducted. Data were collected from 3117 procedures, including 2554 (81.9%) caesarean deliveries. Thiopental was the induction drug in 1649 (52.9%) patients, compared with propofol in 1419 (45.5%). Suxamethonium was the neuromuscular blocking drug for tracheal intubation in 2631 (86.1%), compared with rocuronium in 367 (11.8%). Difficult tracheal intubation was reported in 1 in 19 (95%CI 1 in 16-22) and failed intubation in 1 in 312 (95%CI 1 in 169-667). Obese patients were over-represented compared with national baselines and associated with difficult, but not failed intubation. There was more evidence of change in practice for induction drugs (increased use of propofol) than neuromuscular blocking drugs (suxamethonium remains the most popular). There was evidence of improvement in practice, with increased monitoring and reversal of neuromuscular blockade (although this remains suboptimal). Despite a high risk of difficult intubation in this population, videolaryngoscopy was rarely used (1.9%)
    corecore