54 research outputs found
Posterior Vitreous Detachment and the Posterior Hyaloid Membrane
PURPOSE: Despite posterior vitreous detachment being a common ocular event affecting most individuals in an aging population, there is little consensus regarding its precise anatomic definition. We investigated the morphologic appearance and molecular composition of the posterior hyaloid membrane to determine whether the structure clinically observed enveloping the posterior vitreous surface after posterior vitreous detachment is a true basement membrane and to postulate its origin. Understanding the relationship between the vitreous (in both its attached and detached state) and the internal limiting membrane of the retina is essential to understanding the cause of rhegmatogenous retinal detachment and vitreoretinal interface disorders, as well as potential future prophylactic and treatment strategies. DESIGN: Clinicohistologic correlation study. PARTICIPANTS: Thirty-six human donor globes. METHODS: Vitreous bodies identified to have posterior vitreous detachment were examined with phase-contrast microscopy and confocal microscopy after immunohistochemically staining for collagen IV basement membrane markers, in addition to extracellular proteins that characterize the vitreoretinal junction (fibronectin, laminin) and vitreous gel (opticin) markers. The posterior retina similarly was stained to evaluate the internal limiting membrane. Findings were correlated to the clinical appearance of the posterior hyaloid membrane observed during slit-lamp biomicroscopy after posterior vitreous detachment and compared with previously published studies. MAIN OUTCOME MEASURES: Morphologic appearance and molecular composition of the posterior hyaloid membrane. RESULTS: Phase-contrast microscopy consistently identified a creased and distinct glassy membranous sheet enveloping the posterior vitreous surface, correlating closely with the posterior hyaloid membrane observed during slit-lamp biomicroscopy in patients with posterior vitreous detachment. Immunofluorescent confocal micrographs demonstrated the enveloping membranous structure identified on phase-contrast microscopy to show positive stain results for type IV collagen. Immunofluorescence of the residual intact internal limiting membrane on the retinal surface also showed positive stain results for type IV collagen. CONCLUSIONS: The results of this study provide immunohistochemical evidence that the posterior hyaloid membrane is a true basement membrane enveloping the posterior hyaloid surface. Because this membranous structure is observed only after posterior vitreous detachment, the results of this study indicate that it forms part of the internal limiting membrane when the vitreous is in its attached state
Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth
Citation: Li, L., Hey, S., Liu, S. Z., Liu, Q., McNinch, C., Hu, H. C., . . . Hochholdinger, F. (2016). Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Scientific Reports, 6, 12. doi:10.1038/srep34395Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis
Growth in solvable subgroups of GL_r(Z/pZ)
Let and let be a subset of \GL_r(K) such that is
solvable. We reduce the study of the growth of $A$ under the group operation to
the nilpotent setting. Specifically we prove that either $A$ grows rapidly
(meaning $|A\cdot A\cdot A|\gg |A|^{1+\delta}$), or else there are groups $U_R$
and $S$, with $S/U_R$ nilpotent such that $A_k\cap S$ is large and
$U_R\subseteq A_k$, where $k$ is a bounded integer and $A_k = \{x_1 x_2...b x_k
: x_i \in A \cup A^{-1} \cup {1}}$. The implied constants depend only on the
rank $r$ of $\GL_r(K)$.
When combined with recent work by Pyber and Szab\'o, the main result of this
paper implies that it is possible to draw the same conclusions without
supposing that is solvable.Comment: 46 pages. This version includes revisions recommended by an anonymous
referee including, in particular, the statement of a new theorem, Theorem
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Real-time coordinated trajectory planning and obstacle avoidance for mobile robots
A novel method for real-time coordinated trajectory planning and obstacle avoidance of autonomous mobile robot systems is presented. The desired autonomous system trajectories are generated from a set of first order ODEs. The solution to this system of ODEs converges to either a desired target position or a closed orbit de.ned by a limit cycle. Coordinated control is achieved by utilizing the nature of limit cycles where independent, non-crossing paths are automatically generated from different initial positions that smoothly converge to the desired closed orbits. Real-time obstacle avoidance is achieved by specifying a transitional elliptically shaped closed orbit around the nearest obstacle blocking the path. This orbit determines an alternate trajectory that avoids the obstacle. When the obstacle no longer blocks a direct path to the original target trajectory, a transitional trajectory that returns to the original path is defined. The coordination and obstacle avoidance methods are demonstrated experimentally using differential-drive wheeled mobile robots
- …